

ADVANCED CONCEPT TRAINING ALUMINIUM CODE CHECK

All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. SCIA is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

© Copyright 2018 SCIA nv. All rights reserved.

Table of Contents

Introduction	5
Materials and Combinations	6
Aluminium grades	
Combinations	
Structural Analysis	
Global analysis	
Global frame imperfection φ Initial bow imperfection e₀	
Initial shape, classification and reduced shape	
Initial shape	
Classification	20
Reduced Shape	
Reduction factor p_c for local buckling	22
Reduction factor χ (Kappa) for distortional buckling	
Reduction factor ρ_{HAZ} for weld effects	
Calculation of the effective properties	
Worked example General Cross-section	
SLS check	
Nodal displacement	30
Relative deformations	
Additional Data	41
Setup	41
Aluminium member data	
System lengths and buckling groups Member check data	
Transverse welds	
LTB restraints	
Stiffeners	
Sheeting (diaphragm)	
ULS Check	
Aluminium Slenderness	
Section check	52
Partial safety factors	52
Bending moments	52
Shear	53
Torsion with warping	56
Bending, shear and axial force	
Stability check	
Flexural Buckling	
Torsional (-Flexural) Buckling	
Lateral Torsional Buckling	
Bending and Axial compression	
Shear Buckling References	

Introduction

The applied rules for EN 1999-1-1 are explained and illustrated.

 $^{\rm EC\,\cdot\,EN}$ => EN 1999-1-1:2007 More and detailed references to the applied articles can be found in (Ref.[1])

SCIA Engineer Aluminium Code Check Theoretical Background Release : 18.0 Revision : 08/2018

The explained rules are valid for SCIA Engineer 18.0

The examples are marked by '> Example' The following examples are available :

Project	Subject		
wsa_001.esa	global analysis		
wsa_001a.esa	nodal displacement		
wsa_001b.esa	relative displacements		
wsa_002.esa	classification Z-section		
wsa_003.esa	thinwalled cross-section		
wsa_004.esa	shear		
wsa_005.esa	combined bending - transverse welds		
wsa_006.esa	flexural buckling		
wsa_008.esa	lateral torsional buckling		
wsa_009a.esa	combined stability – xs 1		
wsa_009b.esa	combined stability – xs 2		
wsa_010.esa	shear buckling - stiffeners		

Materials and Combinations

Aluminium grades

The characteristic values of the material properties are based on Table 3.2a for wrought aluminium alloys of type sheet, strip and plate and on Table 3.2b for wrought aluminium alloys of type extruded profile, extruded tube, extruded rod/bar and drawn tube (Ref.[1]).

EN 1999-1-1: 2007 (E)

Table 3.2a - Characteristic values of 0,2% proof strength fo, ultimate tensile strength fu (unwelded and for HAZ), min elongation A, reduction factors po, haz and pu, haz in HAZ, buckling class and exponent np for wrought aluminium alloys - Sheet, strip and plate

Alloy EN-	Temper ¹⁾	Thick- ness	<i>f</i> ₀ ¹⁾	$f_{\mathbf{u}}$	$A_{50}^{(1) 6)}$	f _{o,haz} 2)	fu,haz ²⁾	HAZ-fac	tor ²⁾		
AW	remper	mm ¹⁾	N/mn	1 ²	%	N/n	nm ²	$\rho_{o,haz}^{(1)}$	$\rho_{\rm u,haz}$	4)	1), 5)
3004	H14 H24/H34	≤613	1801170	220	1 3	75	155	0,4210,44	0,70	В	23 18
5004	H16 H26/H36	≤413	2001190	240	113	13	155	0,3810,39	0,65	В	25120
3005	H141H24	≤613	150 130	170	114	56	115	0,3710,43	0,68	В	38 18
5005	H161H26	$\leq 4 \mid 3$	175 160	195	113	1 30	115	0,3210,35	0,59	В	43124
3103	H141H24	≤ 25 12,5	120 110	140	214	44	90	0,3710,40	0,64	В	31120
5105	H161H26	≤4	145 135	160	112	44	90	0,3010,33	0,56	В	48128
	O/H111	≤ 50	35	100	15	35	100	1	1	В	5
5005/ 5005A	H12 H22/H32	≤ 12,5	95180	125	214	- 44	100	0,4610,55	0,80	В	18 11
JUUJA	H14 H24/H34	≤12,5	120 110	145	213		100	0,3710,40	0,69	В	25 17
5052	H12 H22/H32	≤ 40	160 130	210	415	80	170	0,5010,62	0,81	В	17 10
5052	H141H24/H34	≤ 25	180 150	230	314		170	0,4410,53	0,74	В	19 1 1
5049	O/H111	≤ 100	80	190	12	80	190	1	1	В	6
5049	H14 H24/H34	≤ 25	190 160	240	316	100	190	0,5310,63	0,79	В	20 12
5454	O/H111	≤ 80	85	215	12	85	215	1	1	В	5
5454	H14H24/H34	≤ 25	2201200	270	214	105	215	0,4810,53	0,80	В	22 13
5754	O/H111	≤ 100	80	190	12	80	190	1	1	В	6
5154	H14H24/H34	≤ 25	190 160	240	316	100	190	0,5310,63	0,79	В	20 12
	O/H111	≤ 50	125	275	11	125	275	1	1	В	6
5083	0/HIII	50 <t≤80< td=""><td>115</td><td>270</td><td>14 39</td><td>115</td><td>270</td><td>1</td><td>1</td><td>В</td><td>0</td></t≤80<>	115	270	14 39	115	270	1	1	В	0
2005	H12lH22/H32	≤ 40	250 215	305	315	155	275	0,6210,72	0,90	В	22 14
	H14H24/H34	≤ 25	2801250	340	214	155	215	0,5510,62	0,81	A	22 14
	T4/T451	≤ 12,5	110	205	12	95	150	0,86	0,73	В	8
6061	T6/T651	≤ 12,5	240	290	6	115	175	0.48	0,60	А	23
	T651	12,5<≠≤80	240	290	6 3)	115	175	0,40	0,00	А	
	T4/T451	≤ 12,5	110	205	12	100	160	0,91	0,78	В	8
	T61/T6151	≤12,5	205	280	10			0,61	0,66	Α	15
6082	T6151	12,5 <r≤100< td=""><td>200</td><td>275</td><td>12 39</td><td>Ι</td><td></td><td>0,63</td><td>0,67</td><td>Α</td><td>14</td></r≤100<>	200	275	12 39	Ι		0,63	0,67	Α	14
0062	T6/T651	≤6	260	310	6	125	185	0,48	0,60	Α	25
	T6/T651	6 <t≤12,5< td=""><td>255</td><td>300</td><td>9</td><td>I.</td><td></td><td>0,49</td><td>0,62</td><td>Α</td><td>27</td></t≤12,5<>	255	300	9	I.		0,49	0,62	Α	27
26	T651	12,5⊲t≤100	240	295	7 3)		2 3	0,52	0,63	Α	21
7020	T6	≤ 12,5	280	350	7	205	280	0,73	0.80	A	19
/020	T651	≤ 40	280	550	9 ³⁾	205	200	0,75	0,80	A	19
8011A	H141H24	≤ 12,5	110 100	125	213	37	85	0,3410,37	0,68	В	37122
MIA	H16 H26	≤4	130 120	145	112	57	0.5	0,2810,31	0,59	Б	33133

1) If two (three) tempers are specified in one line, tempers separated by "i" have different technological values but separated by "i" have same values. (The tempers show differences for f_0 , A and n_p .). 2) The HAZ-values are valid for MIG welding and thickness up to 15mm. For TIG welding strain hardening alloys (3xxx, 5xxx and 8011A) up to 6 mm the same values apply, but for TIG welding precipitation hardening alloys (6xxx and 7xxx) and thickness up to 6 mm the HAZ values have to be multiplied by a factor 0,8 and so the ρ -factors. For higher thickness – unless other data are available – the HAZ values and ρ -factors have to be further reduced by a factor 0,8 for the precipitation hardening alloys (3xxx, 5xxx) and 90114). These reductions do not once in terms of ρ for the strain hardening alloys (3xxx, 5xxx) and 90114). 5xxx and 8011A). These reductions do not apply in temper O.

3) Based on A (= $A_{5,65\sqrt{A_o}}$), not A_{50} . 4) BC = buckling class, see 6.1.4.4, 6.1.5 and 6.3.1.

5) n-value in Ramberg-Osgood expression for plastic analysis. It applies only in connection with the listed fo-value, 6) The minimum elongation values indicated do not apply across the whole range of thickness given, but mostly to the thinner materials. In detail see EN 485-2.

Table 3.2b - Characteristic values of 0,2% proof strength f_0 and ultimate tensile strength $f_{\rm U}$ (unwelded
and for HAZ), min elongation A, reduction factors $\rho_{0,haz}$ and $\rho_{u,haz}$ in HAZ, buckling class and
exponent np for wrought aluminium alloys - Extruded profiles, extruded tube, extruded rod/bar and
drawn tube

Alloy EN-	Troduct	Temper	Thick- ness t	f ₀ ¹⁾	fu ¹⁾	$A^{(5)(2)}$	f _{o,haz} 4),	f _{u,haz} 4)	HAZ-	factor ⁴⁾	BC	np			
AW	form		mm 1) 3)	N/r	nm²	%	N/r	nm ²	$\rho_{\rm o,haz}$	$\rho_{\rm u,haz}$	6)	7)			
	ET, EP,ER/B	0/H111, F, H112	$t \le 200$	110	270	12	110	270	1	1	В	5			
5083	DT	H12/22/32	$t \le 10$	200	280	6	125	270	0,68	0,96	В	14			
	DT	H14/24/34	<i>t</i> ≤ 5	235	300	4	135	270	0,57	0,90	А	18			
	EP,ET,ER/B	TE	<i>t</i> ≤ 5	120	160	8	50	00	0,42	0,50	В	17			
	EP	T5	$5 < t \le 25$	100	140	8	50	80	0,50	0,57	В	14			
	ET,EP,ER/B		<i>t</i> ≤ 15	140	170	8	(0)	100	0,43	0,59	А	24			
6060	DT	T6	<i>t</i> ≤ 20	160	215	12	60	100	0,38	0,47	Α	16			
	EP,ET,ER/B	T64	<i>t</i> ≤ 15	120	180	12	60	100	0,50	0,56	А	12			
	EP,ET,ER/B	Tree	<i>t</i> ≤ 3	160	215	8		110	0,41	0,51	А	16			
	EP	T66	$3 < t \le 25$	150	195	8	65	110	0,43	0,56	А	18			
1011	EP,ET,ER/B,DT	T4	t<25	110	180	50	95	150	0,86	0,83	В	8			
6061	EP,ET,ER/B,DT	T6	<i>t</i> ≤ 20	240	260	8	115	175	0,48	0,67	А	55			
	EP,ET,ER/B	me	<i>t</i> ≤ 3	130	175	8		100	0,46	0,57	В	16			
	EP	T5	$3 < t \le 25$	110	160	7	60	100	0,55	0,63	В	13			
	EP,ET,ER/B	T	t ≤ 25	160	195	8		110	0,41	0,56	А	24			
6063	DT	T6	<i>t</i> ≤ 20	190	220	10	65		0,34	0,50	А	31			
	EP,ET.ER/B		<i>t</i> ≤ 10	200	245	8			0,38	0,53	A	22			
	EP	T66	$10 < t \le 25$	180	225	8	75 130	130	0,42	0,58	А	21			
1	DT	1	<i>t</i> ≤ 20	195	230	10		10000	0,38	0,57	А	28			
	EP/O, ER/B					<i>t</i> ≤ 5	225	270	8			0,51	0,61	А	25
		P/O, ER/B T6	$5 < t \le 10$	215	260	8	†	8	0,53	0,63	А	24			
6005A				$10 < t \le 25$	200	250	8	115 16	165	0,58	0,66	А	20		
			<i>t</i> ≤ 5	215	255	8	Ť.	2	0,53	0,65	Α	26			
	EP/H, ET	T6	$5 < t \le 10$	200	250	8	1	8	0,58	0,66	А	20			
6106	EP	T6	<i>t</i> ≤10	200	250	8	95	160	0,48	0,64	А	20			
	EP,ET,ER/B	T4	t ≤ 25	110	205	14	100	160	0,91	0,78	В	8			
	EP/O, EP/H	T5	<i>t</i> ≤ 5	230	270	8	125	185	0,54	0,69	В	28			
-	EP/O,EP/H	Tre	<i>t</i> ≤ 5	250	290	8	2	1	0,50	0,64	А	32			
1000	ET	T6	$5 < t \le 15$	260	310	10	1		0,48	0,60	Α	25			
6082	ED/D		<i>t</i> ≤ 20	250	295	8	1	107	0,50	0,63	А	27			
	ER/B	T6	20< t ≤150	260	310	8	125	185	0,48	0,60	А	25			
		The	<i>t</i> ≤ 5	255	310	8	t i		0,49	0,60	А	22			
	DT	T6	$5 < t \le 20$	240	310	10	†	8	0,52	0,60	А	17			
11.	EP,ET,ER/B	T6	<i>t</i> ≤ 15	290	350	10	0)0 00		0,71	0,80	А	23			
7020	EP,ET,ER/B	T6	15 <t <40<="" td=""><td>275</td><td>350</td><td>10</td><td>205</td><td>280</td><td>0,75</td><td>0,80</td><td>А</td><td>19</td></t>	275	350	10	205	280	0,75	0,80	А	19			
	DT	T6	<i>t</i> ≤ 20	280	350	10	t	2	0,73	0,80	А	18			

In SCIA Engineer, the following materials are provided by default:

🄊 🤮 🖋 👪 💺 🗠 🗠 🎒 🗳 🌶 I		- 7
A 14 🖉 00 📾 K 12 12 😂 🖛 🖛 (
N-AW 5083 (Sheet) O/H111 (0-50)	^ Name	EN-AW 6082 (Sheet) T61/T6151 (0-12.5
N-AW 5083 (Sheet) O/H111 (50-80)	4 Code independent	
N-AW 5083 (Sheet) H12	Material type	Aluminium
N-AW 5083 (Sheet) H22/H32	Thermal expansion [m/r	mK] 0,00
N-AW 5083 (Sheet) H14	Unit mass [kg/m^3]	2700,00
N-AW 5083 (Sheet) H24/H34	E modulus [MPa]	7,0000e+04
EN-AW 5083 (ET,EP,ER/B) O/111,F,H112	Poisson coeff.	0,3
N-AW 5083 (DT) H12/22/32	Independent G modulus	
N-AW 5083 (DT) H14/24/34		2.6923e+04
N-AW 6005A (EP/O,ER/B) T6 (0-5)	G modulus [MPa]	
N-AW 6005A (EP/O,ER/B) T6 (5-10)	Log. decrement (non-un	iform d 0,15
N-AW 6005A (EP/O,ER/B) T6 (10-25)	Colour	
N-AW 6005A (EP/H,ET) T6 (0-5)	Specific heat [J/gK]	6,0000e-01
EN-AW 6005A (EP/H,ET) T6 (5-10)	Thermal conductivity [W	//mK] 4,5000e+01
EN-AW 6060 (EP,ET,ER/B) T5 (0-5)	4 Material behaviour	for no
EN-AW 6060 (EP) T5 (5-25)	Material behaviour	Elastic
EN-AW 6060 (ET,EP,ER/B) T6 (0-15)	4 Other characteristic	values
N-AW 6060 (DT) T6 (0-20)	0.2% proof strength (fo)	[MPa] 205,0
EN-AW 6060 (EP,ET,ER/B) T64 (0-15)	ultimate tensile strength	
EN-AW 6060 (EP,ET,ER/B) T66 (0-3)	min elongation [%]	10
N-AW 6060 (EP) T66 (3-25)	-	
N-AW 6063 (EP,ET,ER/B) T5	0.2% proof strength (fo,h	
EN-AW 6063 (EP) T5	ultimate tensile strength	
EN-AW 6063 (EP,ET,ER/B) T6 EN-AW 6063 (DT) T6	buckling class (BC)	A
N-AW 6063 (EP,ET,ER/B) T66	n-value for plastic analys	sis (np) 15
N-AW 6063 (EP) T66		
N-AW 6063 (DT) T66		
N-AW 6082 (Sheet) T4/T451		
N-AW 6082 (Sheet) T61/T6151 (0-12.5)		
N-AW 6082 (Sheet) T6151 (12.5-100)		
N-AW 6082 (Sheet) T6/T651 (0-6)		
N-AW 6082 (Sheet) T6/T651 (6-12.5)		
N-AW 6082 (Sheet) T651 (12.5-100)		
N-AW 6082 (EP,ET,ER/B) T4		
:N-AW 6082 (EP/O,EP/H) T5		
:N-AW 6082 (EP/O,EP/H,ET) T6 (0-5)		
N-AW 6082 (EP/O,EP/H,ET) T6 (5-15)		
N-AW 6082 (ER/B) T6 (0-20)		
N-AW 6082 (ER/B) T6 (20-150)		
N-AW 6082 (DT) T6 (0-5)		
N-AW 6082 (DT) T6 (5-20)		
N-AW 7020 (Sheet) T6 (0-12.5)		
N-AW 7020 (Sheet) T651 (0-40)		
N-AW 7020 (EP,ET,ER/B) T6 (0-15)		
N-AW 7020 (EP,ET,ER/B) T6 (15-40)		
N-AW 7020 (DT) T6 (0-20)		
N-ΔW 8011Δ (Sheet) H14 (0-12 5)	×	
		Close

Combinations

In SCIA Engineer, both the SLS and ULS combinations can be set according to the code rules for EC-EN1990. In this setup, partial safety factors and Psi factors can be set.

Combination (STR/GEO) alternative Used buildings Combination setup Psi factors Combination factors Combination factors Combination setup	EN 1990: 6.4.3.2 (3) Eq.6.10 EN 1990: Annex A1 Table A1.1	
- (STR/GEO) alternative - Gombination setup - Combination setup - Psi factors - Load combination factors - Footbridges - Road bridges - Footbridges - Psi factors - Road bridges - Road bridges - Psi factors - Road bridges - Road bridge	Eq.6.10	
Combination setup Psi factors Load combination factors Footbridges Psi factors Psi fa	Eq.6.10	
Psi factors Load combination factors Bridges Combination setup Railway bridges Psi factors Psi fa		,
Load combination factors Load combination factors Combination setup Road bridges Footbridges Railway bridges Raidway		
Combination setup Combination setup Combination setup Combination setup Road bridges Footbridges Psi factors Railway bridges Psi factors Road bridges Psi factors Road bridges Psi factors	EN 1990: Annex A1 Table A1.1	
Road bridges Footbridges Railway bridges Railway bridges Psi factors Psi factors Psi factors Psi factors Road bridges Psi factors	EN 1990: Annex A1 Table A1.1	
Footbridges Railway bridges Psi factors	EN 1990: Annex A1 Table A1.1	
Read bridges		
Psi factors Road bridges Forthridges Berthridges		
- Footbridges		
Footbridges		
Reference: EN 1990: 6.4.3.2 (3) & Annex A1 Table A1.2 Description: (STR/GEO) alternative selection. Application: To Obtain rules for (STR/GEO) combinations generative	EN 1990: Annex B Table B3	

Following EC-EN 1990:2002 the ULS combinations can be expressed in two ways. - Using Equation 6.10

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_P P' + \gamma_{Q,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
- Using Equations 6.10a and 6.10b
$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_P P' + \gamma_{Q,1} \psi_{0,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$

$$\sum_{j\geq 1} \xi_j \gamma_{G,j} G_{k,j} + \gamma_P P' + \gamma_{Q,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$

Both methods have been implemented in SCIA Engineer. The method which needs to be applied will be specified in the National Annex.

> Example

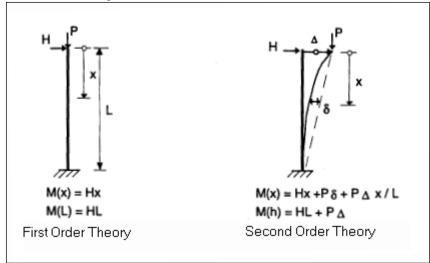
pjected to an unfavorable permanent load, a Category A
ions γ _G = 1,35
$\gamma_{Q,1} = 1,50$
tions $\gamma_{Q,i} = 1,50$
gory A equals 0,7
ble permanent actions $\xi = 0,85$
nent + 1,5 Imposed + 0,9 Wind

\rightarrow Combination 2: 1,35 Permanent + 1,05 Imposed + 1,5 Wind

Using equations 6.10a and 6.10b:

- → Combination 1: 1,35 Permanent + 1,05 Imposed + 0,9 Wind → Combination 2: 1,15 Permanent + 1,5 Imposed + 0,9 Wind → Combination 3: 1,15 Permanent + 1,05 Imposed + 1,5 Wind

Structural Analysis


 α_{cr}

Global analysis

Global analysis aims at determining the distribution of the internal forces and moments and the corresponding displacements in a structure subjected to a specified loading.

The first important distinction that can be made between the methods of analysis is the one that separates elastic and plastic methods. Plastic analysis is subjected to some restrictions. Another important distinction is between the methods, which make allowance for, and those, which neglect the effects of the actual, displaced configuration of the structure. They are referred to respectively as second-order theory and first-order theory based methods. The second-order theory can be adopted in all cases, while first-order theory may be used only when the displacement effects on the structural behavior are negligible.

The second-order effects are made up of a local or member second-order effects, referred to as the P- δ effect, and a global second-order effect, referred to as the P- Δ effect.

According to the EC-EN 1999, 1st Order analysis may be used for a structure, if the increase of the relevant internal forces or moments or any other change of structural behaviour caused by deformations can be neglected. This condition may be assumed to be fulfilled, if the following criterion is satisfied:

$$= \frac{F_{cr}}{F_{Ed}} \ge 10 \text{ for elastic analysis.}$$

With: α_{cr} The factor by which the design loading has to be increased to cause elastic instability in a global mode.
F_{Ed} The design loading on the structure.
F_{cr} The elastic critical buckling load for global instability, based on initial elastic stiffnesses.

If α_{cr} has a value lower then 10, a 2nd Order calculation needs to be executed. Depending on the type of analysis, both Global and Local imperfections need to be considered. Eurocode prescribes that 2nd Order effects and imperfections may be accounted for both by the global analysis or partially by the global analysis and partially through individual stability checks of members.

Global frame imperfection φ

The global frame imperfection is given by 5.3.2(3) Ref.[1]:

$$\varphi = \frac{1}{200} \cdot \alpha_h \cdot \alpha_m$$
$$\alpha_h = \frac{2}{\sqrt{h}} \quad \text{but } \frac{2}{3} \le \alpha_h \le 1,0$$
$$\alpha_m = \sqrt{0.5\left(1 + \frac{1}{m}\right)}$$

With: h The height of the structure in meters

m The number of columns in a row including only those columns which carry a vertical load N_{Ed} not less than 50% of the average value of the vertical load per column in the plane considered.

Initial deformations \times 🚚 💱 🍠 📸 🗽 🕰 💭 🥂 🗛 🗛 - 7 IDef1 Name IDef1 EN 1999-1-1 art. 5.3.2(3) Туре 200,00 Basic imperfection value : 1 / [-] 5,000 Height of structure : [m] Number of columns per plane : 4 Φ: 0,00353600 0,89 α_h:[-] 0,79 α_m:[-] Edit Delete Close New Insert

This can be calculated automatically by SCIA Engineer

Initial bow imperfection e₀

The values of **e0/L** may be chosen in the National Annex. Recommended values are given in the following Table 5.1 Ref.[1]. The bow imperfection has to be applied when the normal force N_{Ed} in a member is higher than 25% of the member's critical buckling load N_{cr} .

Buckling class	elastic analysis	plastic analysis
acc. to Table 3.2	e ₀ /L	e ₀ /L
А	1/300	1/250
В	1/200	1/150

L represents the member length.

SCIA Engineer can calculate the bow imperfection according to the code automatically for all needed members or the user can input values for e_0 . This is done via 'Project data' > 'National Annex' > 'EN 1999: Design of aluminium structures' > 'EN 1999-1-1 (General structural rules)'.

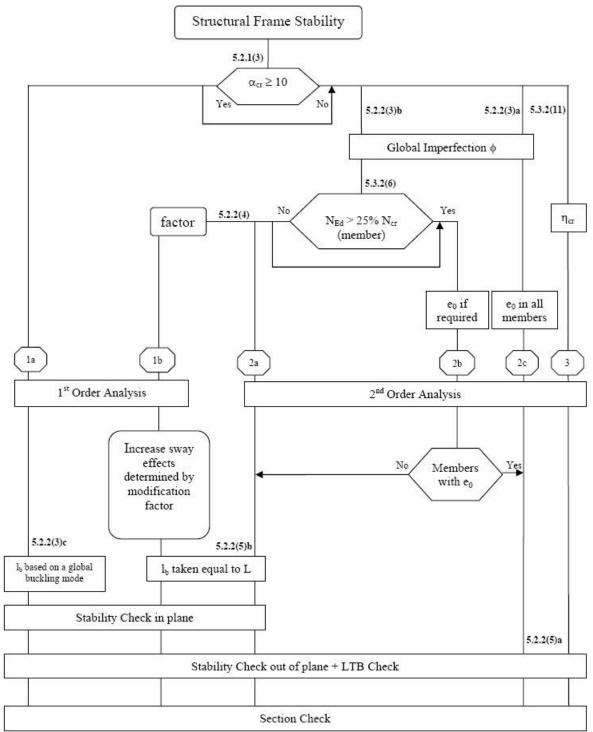
·· Standard EN	Name	Standard EN		
🗄 - Aluminium	Aluminium			
Member check	4 Member check	EN 1999-1-1		
	4 Bow Imperfections	EN 1999-1-1: 5.3.2(3) b)		
	 e0/L Class A elastic 			
	Value [-]	300,00		
	 e0/L Class A plastic 			
	Value [-]	250,00		
	✓ e0/L Class B elastic			
	Value [-]	200,00		
	✓ e0/L Class B plastic			
	Value [-]	150,00		
	4 Member Imperfection	EN 1999-1-1: 5.3.4(3)		
	Value [-]	0,50		
	4 Partial Safety Factors	EN 1999-1-1: 6.1.3(1)		
	✓ Gamma M1			
	Value [-]	1,10		
	✓ Gamma M2			
	Value [-]	1,25		
	4 Resistance Yield Criterion	EN 1999-1-1: 6.2.1(5)		
	4 C			
	Value [-]	1,20		
		Load default NA parameters	OK	Ci

In order to input Global and Bow imperfections in SCIA Engineer, the user has to select the functionality 'Nonlinearity' + 'Beam local nonlinearity' + 'Initial impefections' + 'Geometrical nonlinearity' in the 'Project data'. Some of these functionalities are enabled by default for new projects only. Only after doing this the input of a non-linear function is possible.

Project data					\times
Basic data Fun	ctionality Actions Unit Set Protect	ion			
	Property modifiers			Nonlinearity	
	Parametric input			Beam local nonlinearity	
ARK C	Climatic loads			Support nonlinearity/basic soil sp	
HAR .	Mobile loads			Initial imperfections	
FHAT	Dynamics			Geometrical nonlinearity	
THE	Stability			General plasticity	
11/22	Nonlinearity			Cables	
	Structural model			Friction support/Soil spring	
	IFC properties			Sequential analysis	
THEM	Prestressing		.4	Subsoil	
	Bridge design			Pile Design [NEN method]	
	Excel checks			Pad foundation check	
	Document		al.	Aluminium	
				Scaffolding	
				7DoF 2nd order analysis for LTB	
A Come (C					
				ОК	Cancel

Nonlinear combinations - NC1	×
Contents of combination Load case LC1 - selfweight / 1.35 LC2 - roof and floor loads / 1.35	List of load case LC1 - selfweight LC2 - roof and floor loads LC3 - office loads WND - L - Wind from the left WND - R - Wind from the right
Name : NC1 Coeff : 1 Correct Type : Ultimate \checkmark Description :	Delete Add Delete All Add All Inclination functions dx Z IDef1 V
Bow imperfection According to b \checkmark	
Global imperfection Inclination fun	OK Cancel

By selecting a 'System lengths and buckling groups' tab ('Main menu' > 'Aluminium' > 'Beams' > 'System lengths and buckling groups'), the user can adjust the input of Bow imperfection. This will apply to each member of this buckling group.


System lengths	and buckling groups		×
🔎 🤮 🖋 💺	: 🕰 🖴 🖨 🖬 🛛	- 7	
BC1	Name	BC1	
BC2	Number of parts	2	
BC3	Description		
	Member(s) material	Aluminium	
	ky factor	Calculate	-
	kz factor	Calculate	*
	Point of load application	In shear center	*
	Mcr	Calculated	-
	Bow imperfection e0,y	EN 1999-1-1 Table 5.1 – elastic	Ŧ
	Bow imperfection e0,z	EN 1999-1-1 Table 5.1 - elastic	~
		yy zz	
		2	
New Insert	Edit Delete		Close

The same can be done for each member by selecting it and going to its property window and choosing 'System lengths and buckling settings'.

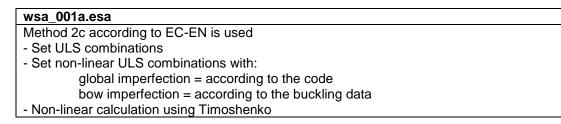
6	Buckling			
	System lengths and buck	BC2	Ŧ	
	Material and no. of parts	Aluminium - 3	1	-
	Secondary member			

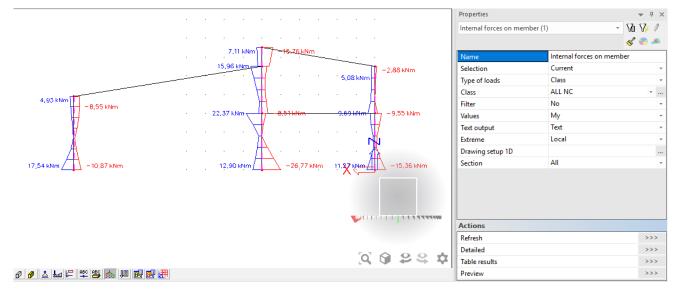
The buckling curve used for calculation of the imperfection is the curve indicated in the material properties.

The general procedure for EC-EN1999 is shown in the following diagram.

With: η_{cr} Elastic critical buckling mode.

L Member system length


I_b Buckling Length


Path 1a specifies the so called "Equivalent Column Method".

In step 1b and 2a " I_b may be taken equal to L". This is according to EC-EN so the user does not have to calculate the buckling factor =1.

Path 2 specifies the "equivalent sway method". In further analysis a buckling factor smaller than 1 may be justified.

Example

The bow imperfection can be visualized through 'Aluminium' > 'Beams' > 'Slenderness data'.

Slenderness data

Linear calculation

Member	CS Name	Part	Sway y	_Ly [m] ³⁰	ky ⊱[-]	ly _[m]	Lam y [-]	e0,y [mm]	lyz [m]	I LTB [m]
			Sway z	Lz [m] ²⁰	€0 -]	lz [m]	Lam z [-]	e0,z [mm]	.500	
B1	column A	1	Yes	3,000	1,13	3,387	56,38	10,0	5,500	5,500
			No	5,500	1,00	5,500	196,15	18,3		
B1	column A	· 2·	Yes	2,500	1,45	3,616	60,19	8,3	5,500	5,500
			No	5,500	1,00	5,500	196,15	18,3		
B2	column B	. 1.	Yes	3,000	1,27	3,798	50,49	10,0	6,500	6,500
			No	6,500	1,00	6,500	213,76	21,7		
B2	column B	2	Yes	2,500	1,84	4,598	61,12	8,3	6,500	6,500
			No	6,500	1,00	6,500	213,76	21,7		
B2	column B	3	Yes	1,000	2,00	2,003	26,64	3,3	6,500	6,500
		· · · ·	No	6,500	1,00	6,500	213,76	21,7		
B3	column C	1	Yes	3,900	1,02	3,975	66,17	13,0	3,900	3,900
			No	3,900	1,00	3,900	139,09	13,0	000,000	

According to Table 3.2 (Ref.[1]). Buckling class according to material = EN-AW 6082 (Sheet) T6/T651 (0-6) \rightarrow A - Column B1: L₁ = 2500mm \rightarrow e₀ = 1/300 * 2500 = 8,3mm - Column B1: L₂ = 3000mm \rightarrow e₀ = 1/300 * 3000 = 10,0mm - Column B2: L₁ = 3000mm → $e_0 = 1/300 * 3000 = 10,0mm$ - Column B2: L₂ = 2500mm → $e_0 = 1/300 * 2500 = 8,3mm$ - Column B2: L₃ = 1000mm → $e_0 = 1/300 * 1000 = 3,3mm$ - Column B3: L₁ = 3900mm → $e_0 = 1/300 * 3900 = 13,0mm$ - Column B3: L₂ = 3900mm → $e_0 = 1/300 * 3900 = 13,0mm$

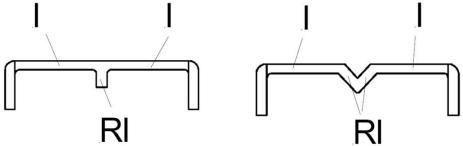
Initial shape, classification and reduced shape

Initial shape

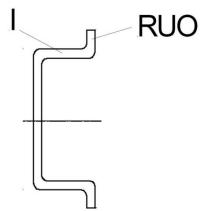
For a cross-section with material Aluminium, the Initial Shape can be defined. For a General Crosssection, the 'Thin-walled representation' has to be used to be able to define the Initial Shape. The inputted types of parts are used further used for determining the classification and reduction factors.

The thin-walled cross-section parts can have the following types:

F	Fixed Part – No reduction is needed
I	Internal cross-section part
SO	Symmetrical Outstand
UO	Unsymmetrical Outstand


A part of the cross-section can also be considered as reinforcement:

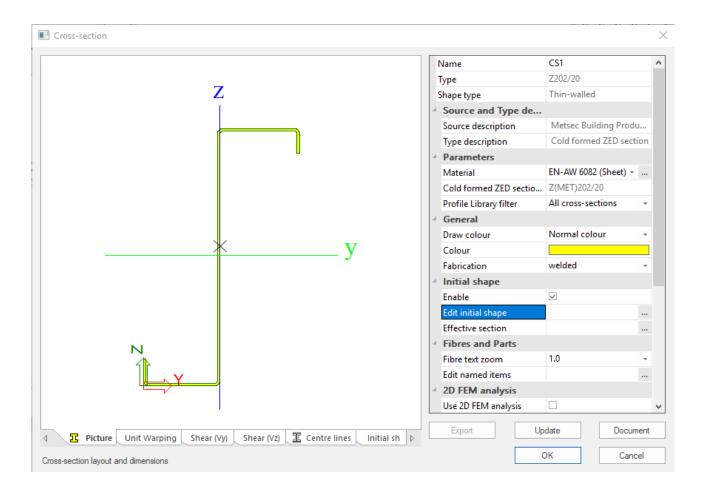
none	Not considered as reinforcement
RI	Reinforced Internal (intermediate stiffener)
RUO	Reinforced Unsymmetrical Outstand (edge stiffener)


In case a part is specified as reinforcement, a reinforcement ID can be inputted. Parts having the same reinforcement ID are considered as one reinforcement.

The following conditions apply for the use of reinforcement:

RI: There must be a plate type I on both sides of the RI reinforcement.

RUO: The reinforcement is connected to only one plate with type I.


For standard cross-sections, the default type and reinforcement can be found in (Ref.[1]). For non standard section, the user has to evaluate the different parts in the cross-section.

The Initial Shape can be inputted using 'Libraries' > 'Cross-sections' > 'Edit' > 'Initial shape'. When this option is activated, the user can select 'Edit initial shape'. In this box also welds (HAZ – Heath Affected Zone) can be inputted.

The parameters of the welds (HAZ) are:

- Plate ID
- Position
- Weld Method: MIG or TIG
- Weld Material: 5xxx and 6xxx or 7xxx
- Weld Temperature
- Number of heath paths

These parameters will be discussed further.

Zc [mm] -89,90 -99,95 0,00 99,95	A [mm^2] 40,00 116,00 400,00	Ybeg [mm] -58,20 -58,20	Zbeg [mm] -79,90 -99,90	Yend [mm] -58,20 -0,20	-99,90	t [mm] 2,00	UO	Reinf.type	Reinf.IE
-99,95 0,00	116,00	-58,20						• none •	0
0,00			-99,90	-0.20	400.00				
	400,00			-0,20	-100,00	2,00	1	• none •	0
99,95		-0,20	-100,00	0,20	100,00	2,00	1	none -	0
	126,00	0,20	100,00	63,20	99,90	2,00	1	none -	0
90,90	36,00	63,20	99,90	63,20	81,90	2,00	UO	none -	0
	-		-	f heat p	rawinç		ſ	_1	
		21 · · ·	20 C C		s.type ;ition[m osition[Id meth Id mate perature f heat p		s.type iition[m osition[Id meth Id mate perature f heat p	s.type ition[m ssition[Id meth Id mate perature f heat p	s.type ition[m ssition[Id meth Id mate perature f heat p

Classification

Four classes of cross-sections are defined, as follows (Ref.[1]):

- Class 1 cross-sections are those that can form a plastic hinge with the rotation capacity required for plastic analysis without reduction of the resistance.
- Class 2 cross-sections are those that can develop their plastic moment resistance, but have limited rotation capacity because of local buckling.
- Class 3 cross-sections are those in which the calculated stress in the extreme compression fibre of the aluminium member can reach its proof strength, but local buckling is liable to prevent development of the full plastic moment resistance.
- Class 4 cross-sections are those in which local buckling will occur before the attainment of proof stress in one or more parts of the cross-section.

Classification for members with combined bending and axial forces is made for the loading components separately. No classification is made for the combined state of stress.

Classification is thus done for N, My and Mz separately. Since the classification is independent on the magnitude of the actual forces in the cross-section, the classification is always done for each component/part.

Taking into account the sign of the force components and the HAZ reduction factors, this leads to the following force components for which classification is done:

Compression force	N-
Tension force	N+ with $\rho_{0,HAZ}$
Tension force	N+ with ρ _{u,HAZ}
y-y axis bending	My-
y-y axis bending	My+
z-z axis bending	Mz-
z-z axis bending	Mz-

For each of these components, the reduced shape is determined and the effective section properties are calculated.

The following procedure is applied for determining the classification of a part:

- Step 1: calculation of stresses:
 For the given force component (N, My, Mz) the normal stress is calculated over the rectangular plate part for the initial (geometrical) shape.
- Step 2: determination of stress gradient over the plate part.
- Step 3: calculation of slenderness:
- Depending on the stresses and the plate type, the slenderness parameter β is calculated. Used formulas can be found in (Ref.[1]).

if $\beta \leq \beta_1$: class 1
if $\beta_1 < \beta \le \beta_2$: class 2
if $\beta_2 < \beta \le \beta_3$: class 3
if β3<β	: class 4

Values for β_1 , β_2 and β_3 are according to Table 6.2 of (Ref.[1]):

Material classification		Internal part	-	Outstand part						
according to Table 3.2	β_1/ε	β_2/ε	β_3/ε	β_1/ε	β_2/ε	β_3/ε				
Class A, without welds	11	16	22	3	4,5	6				
Class A, with welds	9	13	18	2,5	4	5				
Class B, without welds	13	16,5	18	3,5	4,5	5				
Class B, with welds	10	13,5	15	3	3,5	4				
$\varepsilon = \sqrt{250/f_o}$, f_o in N/mm ²										

Reduced Shape

The cross-section properties are used to calculate the internal forces and deformations. The reduced shape is used for the Aluminium Code Check and is based on 3 reduction factors:

- ρ_c: reduction factor due to 'Local Buckling' of a part of the cross-section. For a cross-section part under tension or with classification different from Class 4, the reduction factor ρ_c is taken as 1,00.
- χ (Kappa): reduction factor due to 'Distortional Buckling'.
- ρ_{HAZ}: reduction factor due to HAZ effects.

Reduction factor pc for local buckling

In case a cross-section part is classified as Class 4 (slender), the reduction factor ρ_c for local buckling is calculated according to art. 6.1.5 Ref.[1]:

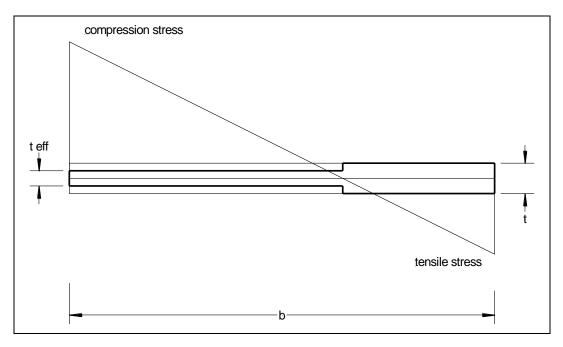
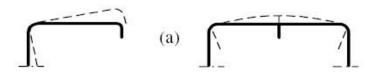

$$\rho_c = \frac{\sigma_1}{(\beta/\varepsilon)} - \frac{\sigma_2}{(\beta/\varepsilon)^2}$$

Table 6.3 - Constants C_1 and C_2 in expressions for ρ_c

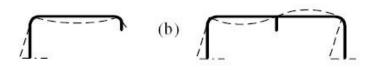
Material classification according	Intern	al part	Outstand part				
to Table 3.2	<i>C</i> ₁	C2	<i>C</i> ₁	C ₂			
Class A, without welds	32	220	10	24			
Class A, with welds	29	198	9	20			
Class B, without welds	29	198	9	20			
Class B, with welds	25	150	8	16			

For a cross-section part under tension or with classification different from Class 4 the reduction factor ρ_c is taken as 1,00.

In case a cross-section part is subject to compression and tension stresses, the reduction factor ρ_c is applied only to the compression part as illustrated in the following figure.


Reduction factor χ (Kappa) for distortional buckling

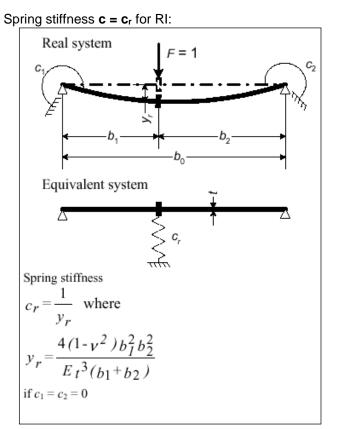
In SCIA Engineer a general procedure is used according to Ref.[2] p66. The design of stiffened elements is based on the assumption that the stiffener itself acts as a beam on elastic foundation, where the elastic foundation is represented by a spring stiffness depending on the transverse bending stiffness of adjacent parts of plane elements and on the boundary conditions of these elements.


The effect of 'Local and Distortional Buckling' is explained as follows (Ref.[1]): When considering the susceptibility of a reinforced flat part to local buckling, three possible buckling modes should be considered.

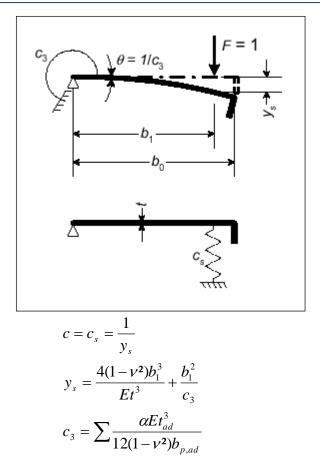
The modes are:

a) Mode 1: the reinforced part buckles as a unit, so that the reinforcement buckles with the same curvature as the part. This mode is often referred to as Distortional Buckling (Figure (a)).

b) Mode 2: the sub-parts and the reinforcement buckle as individual parts with the junction between them remaining straight. This mode is referred as Local Buckling (Figure (b)).


c) Mode 3: this is a combination of Modes 1 and 2 in which sub-part buckles are superimposed on the buckles of the whole part.

The following procedure is applied for calculating the reduction factor for an intermediate stiffener (RI) or edge stiffener (RUO):


Step 1) Calculation of spring stiffness

- Step 2) Calculation of Area and Second moment of area
- Step 3) Calculation of stiffener buckling load
- Step 4) Calculation of reduction factor for distortional buckling

Step 1: Calculation of spring stiffness

Spring stiffness $c = c_s$ for RUO:

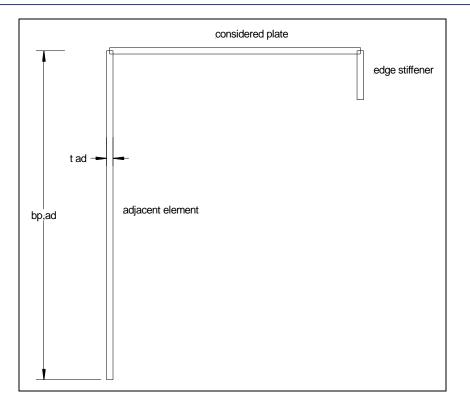
With:

t_{ad}

α

Thickness of the adjacent element

Flat width of the adjacent element $b_{\text{p,ad}}$ **C**3

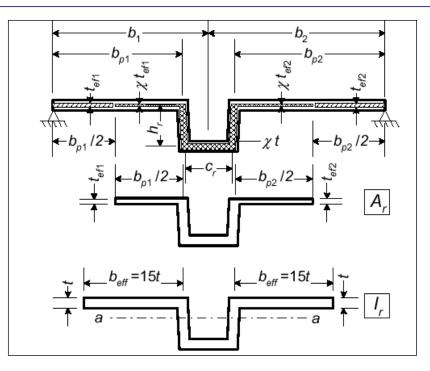

The sum of the stiffnesses from the adjacent elements

equal to 3 in the case of bending moment load or when the cross section

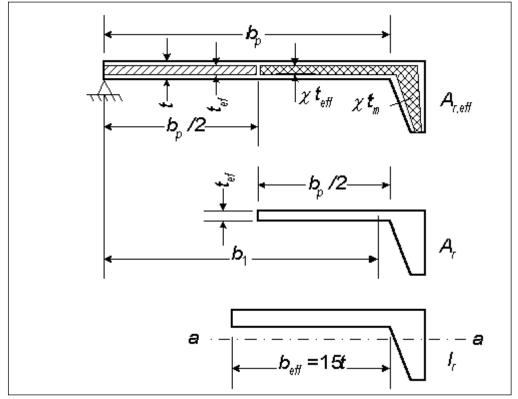
is made of more than 3 elements (counted as plates in initial geometry, without the reinforcement parts) equal to 2 in the case of uniform compression in cross sections made of 3

elements (counted as plates in initial geometry, without the reinforcement parts, e.g. channel or Z sections)

These parameters are illustrated on the following picture:


Step 2: Calculation of Area and Second moment of area

After calculating the spring stiffness the area Ar and Second moment of area Ir are calculated.


With:	Ar	the area of the effective cross section (based on $t_{eff} = \rho_c t$) composed of the stiffener area and half the adjacent plane elements
	lr	the second moment of area of an effective cross section composed of the (unreduced) stiffener and part of the adjacent plate elements, with
	b _{eff}	thickness t and effective width b eff, referred to the neutral axis a-a For RI reinforcement taken as 15 t
		For ROU reinforcement taken as 12 t

These parameters are illustrated on the following figures.

Ar and Ir for RI:

Ar and Ir for RUO:

Step 3: Calculation of stiffener buckling load

The buckling load $\boldsymbol{N}_{r,cr}$ of the stiffener can now be calculated as follows:

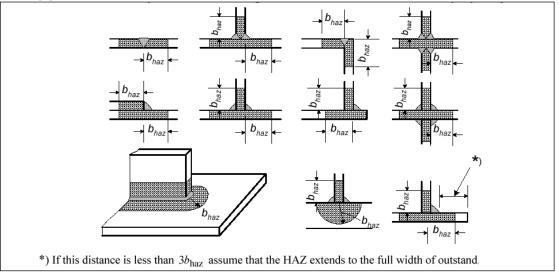
$$N_{r,cr} = 2\sqrt{cEI_r}$$

With: c Spring stiffness of Step 1
E Module of Young
Ir Second moment of area of Step 2

Step 4: Calculation of reduction factor for distortional buckling

Using the buckling load $N_{r,cr}$ and area Ar the relative slenderness λ_c can be determined for calculating the reduction factor χ :

$$\begin{split} \lambda_c &= \sqrt{\frac{f_o A_r}{N_{r,cr}}} \\ \alpha &= 0.20 \\ \lambda_0 &= 0.60 \\ \phi &= 0.50(1.0 + \alpha(\lambda_c - \lambda_0) + \lambda_c^2) \\ if \quad \lambda_c < \lambda_0 \quad \Longrightarrow \chi = 1.00 \\ if \quad \lambda_c \ge \lambda_0 \quad \Longrightarrow \chi = \frac{1}{\phi + \sqrt{\phi^2 - \lambda_c^2}} \le 1.00 \\ \end{split}$$
With: f_0 0.2% proof strength


 λ_c Relative slenderness

- λ_0 Limit slenderness taken as 0,60
- α Imperfection factor taken as 0,20
- χ Reduction factor for distortional buckling

The reduction factor is then applied to the thickness of the reinforcement(s) and on half the width of the adjacent part(s).

Reduction factor phaz for weld effects

The extent of the Heat Affected Zone (HAZ) is determined by the distance b_{haz} according to art.6.1.6.3 of Ref.[1].

The value for \mathbf{b}_{haz} is multiplied by the factors α_2 and 3/n:

For 5xxx & 6xxx alloys:
$$\alpha_2 = 1 + \frac{(T1-60)}{120}$$

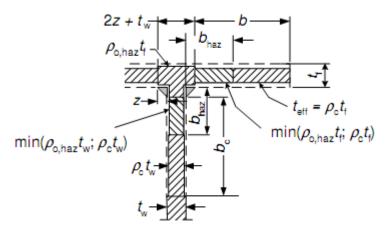
For 7xxx alloys: $\alpha_2 = 1 + 1.5 \frac{(T1-60)}{120}$

With:T1Interpass temperaturenNumber of heat paths

Note:

The variations in numbers of heath paths 3/n is specifically intended for fillet welds. In case of a butt weld the parameter n should be set to 3 (instead of 2) to negate this effect.

The reduction factor for the HAZ is given by:

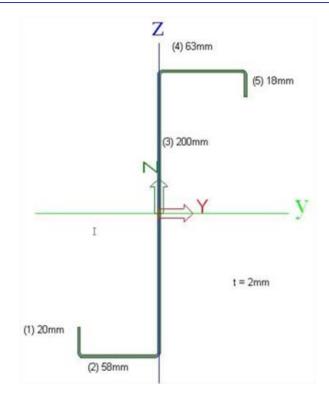

$$\rho_{u,haz} = \frac{f_{u,haz}}{f_u}$$
$$\rho_{o,haz} = \frac{f_{o,haz}}{f_o}$$

By editing a profile in SCIA Engineer, the user can evaluate for each component (N, My and Mz) the determined classification and reduction factors via the option 'Run analysis'.

											·										
F	Parts	ld	Psi	Sigma Beg [kN/m ²]	Sigma End [kN/m ²]	C1	C2	Beta	Beta1	Beta2	Beta3	Class	Beg x [mm]	End x [mm]	Ro c	Chi	Ro haz	Ro	Reinf. ID	Ar_2 [mm ²]	Ir [mm ⁴]
		1	0.000	0.000	0.000	9.000	20.000	10.000	2.761	4.417	5.522	4	0.00	20.00	1.000	1.000	1.000	1.000	0	0.00	0.00
	4	2	0.000	0.000	0.000	29.000	198.000	20.300	9.939	14.356	19.878	4	0.00	58.00	1.000	1.000	1.000	1.000	0	0.00	0.00
	3	0.000	0.000	0.000	29.000	198.000	70.000	9.939	14.356	19.878	4	0.00	75.00	1.000	1.000	1.000	1.000	0	0.00	0.00	
												75.00	125.00	1.000	1.000	0.610	0.610				
													125.00	200.00	1.000	1.000	1.000	1.000			
		4	0.000	0.000	0.000	29.000	198.000	22.050	9.939	14.356	19.878	4	0.00	63.00	1.000	1.000	1.000	1.000	0	0.00	0.00
	2	5	0.000	0.000	0.000	9.000	20.000	6.300	2.761	4.417	5.522	4	0.00	18.00	1.000	1.000	1.000	1.000	0	0.00	0.00
1 2																					

Calculation of the effective properties

For each part the final thickness reduction ρ is determined as the minimum of χ - ρ_c and ρ_{haz} .


The section properties are then recalculated based on the reduced thicknesses.

Worked example

Example wsa_002

In this example, a manual check is made for a cold formed ZED section (lipped Z-section). A simple supported beam with a length of 6m is modelled. The cross-section is taken from the profile library: Z(MET) 202/20.

The dimensions are indicated:

The material properties are as indicated in EC-EN1999: EN-AW 6082 (Sheet) T61/T6151 (0- 12.5): $f_0 = 205 \text{ N/mm}^2$, $f_{0,HAZ} = 125 \text{ N/mm}^2$ $f_u = 280 \text{ N/mm}^2$, $f_{u,HAZ} = 280 \text{ N/mm}^2$ Buckling curve: a Fabrication: welded

A weld is made in the middle of part (3). The parameters of this weld are:

- MIG- weld
- 6xxx alloy
- Interpass temperature = 90°

The 5 parts of the cross-section (type) are as indicated by SCIA Engineer:

	Yc [mm]	Zc [mm]	A [mm^2]	Ybeg [mm]	Zbeg [mm]	Yend [mm]	Zend [mm]	t [mm]	Plate ty	/pe	Reinf.ty	pe	Reinf.ID
1	-58,20	-89,90	40,00	-58,20	-79,90	-58,20	-99,90	2,00	UO	Ŧ	RUO	Ŧ	0
2	-29,20	-99,95	116,00	-58,20	-99,90	-0,20	-100,00	2,00	1	Ŧ	none	-	0
3	0,00	0,00	400,00	-0,20	-100,00	0,20	100,00	2,00	I.	-	none	-	0
4	31,70	99,95	126,00	0,20	100,00	63,20	99,90	2,00	I.	-	none	Ŧ	0
5	63,20	90,90	36,00	63,20	99,90	63,20	81,90	2,00	UO	-	RUO	-	0

The manual calculation is done for compression (N-).

Classification

According to 6.1.4 Ref.[1]:

 ψ = stress gradient = 1 (compression in all parts)

=>
$$\varepsilon = \sqrt{\frac{250}{f_0}} = \sqrt{\frac{250}{205}} = 1,104$$

=> $\eta = 0,70 + 0,30\psi = 1$

For all parts with no stress gradient (6.1.4.3 Ref.[1]): $\beta = b/t$

Part	Туре	b	t	β
1	RUO	20	2	10
2	I	58	2	29
3	I	200	2	100
4	I	63	2	31,5
5	RUO	18	2	9

Next, the boundaries for class 1, 2 and 3 are calculated according to 6.1.4.4 and Table 6.2 Ref.[1]. Boundaries β_1 , β_2 and β_3 are depended on the buckling class (A or B), the presence of longitudinal welds and the type (internal/outstand part).

Part	Туре	β1/ε	β2/ε	β ₃ /ε	β 1	β2	β3	classification
1	RUO	3	4,5	6	3,31	4,97	6,62	4
2	l	11	16	22	12,14	17,66	24,29	4
3	l	9	13	18	9,94	14,36	19,88	4
4	I	11	16	22	12,14	17,66	24,29	4
5	RUO	3	4,5	6	3,31	4,97	6,62	4

Reduction factor pc for local buckling

 ρ_c is calculated according to 6.1.5 and Formulas (6.11) and (6.12) Ref.[1] (all parts class 4):

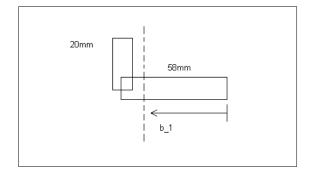
$$\rho_c = \frac{C_1}{\left(\beta/\varepsilon\right)} - \frac{C_2}{\left(\beta/\varepsilon\right)^2}$$

Part	β	C_1	C2	ρ _c
1	10	10	24	0,811
2	29	32	220	0,899
3	100	29	198	0,296
4	31,5	32	220	0,851
5	9	10	24	0,866

Reduction factor χ for distortional buckling

Distortional buckling has to be calculated for Part 1-2 and Part 4-5.

Part 1-2


Step 1: calculation of spring stiffness

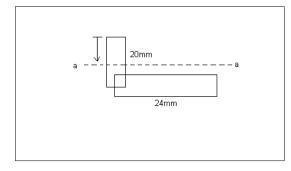
$$c = c_{s} = \frac{1}{y_{s}}$$
$$y_{s} = \frac{4(1 - v^{2})b_{1}^{3}}{Et^{3}} + \frac{b_{1}^{2}}{c_{3}}$$
$$c_{3} = \sum \frac{\alpha Et_{ad}^{3}}{12(1 - v^{2})b_{p,ad}}$$

With: $\alpha = 3$ (more than three parts) $E = 70000 \text{ N/mm}^2$ v = 0,3 $t_{ad} = 2 \text{ mm}$ $b_{p,ad} = 200 \text{ mm}$ (length of the third part)

Thus this gives:

$$c_3 = \frac{2 \times 70000 \times 2^3}{12(1-0,3^2) \times 200} = 512,82$$
Nrad

$$b_1 = \frac{(58 \times 2) \times \frac{58}{2} + (20 \times 2) \times 58}{(58 \times 2) + (20 \times 2)} = 36,44 \, mm$$


$$y_s = \frac{4 \times (1 - 0.3^2) \times 36.44^3}{70000 \times 2^3} + \frac{36.44^2}{512.82} = 2.903 \, mm^2 / N$$

$$c = c_s = \frac{1}{y_s} = \frac{1}{2,903} = 0,344N / mm^2$$

Step 2: calculation of Area and Second moment of area => half of the adjacent member = $\frac{58}{2}$ mm

 ρ_c for Part (2) = 0,899

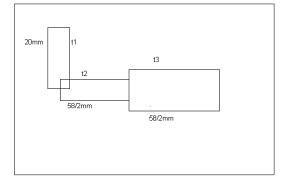
$$A_r = 20 \times 2 + \frac{58}{2} \times 2 \times 0,899 = 92,142 \, mm^2$$

 b_{eff} = For RUO reinforcement taken as 12xt t = 2mm

=> b_{eff} = 24mm

$$y = \frac{\frac{(20 \times 2) \times \frac{20}{2} + (24 \times 2) \times 20}{(20 \times 2) + (24 \times 2)}}{(20 \times 2) + (24 \times 2)} = 15,45 \, \text{mm}$$
$$I_r = \frac{2 \times 20^3}{12} + (20 \times 2) \times (15,45 - \frac{20}{2})^2 + \frac{24 \times 2^3}{12} + (24 \times 2) \times (20 - 15,45)^2 = 3531,15 \, \text{mm}^4$$

Step 3: calculation of stiffener buckling load

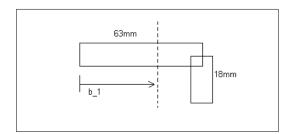

$$N_{r,cr} = 2 \times \sqrt{c \times E \times I_r} = 2 \times \sqrt{0,344 \times 70000 \times 3531,15} = 18454,4N$$
$$\lambda_c = \sqrt{\frac{f_0 \times A_r}{N_{r,cr}}} = \sqrt{\frac{205 \times 92,142}{18454,4}} = 1,0117$$

 $\begin{aligned} \alpha &= 0,2 \\ \lambda_0 &= 0,60 \\ \Rightarrow \lambda_0 > \lambda_0 \\ \Rightarrow \phi &= 0,50 \times (1+0,2 \times (1,0117 - 0,6) + 1,0117^2) = 1,0529 \\ \Rightarrow \chi &= \frac{1}{\phi + \sqrt{\phi^2 - \lambda_c^2}} = 0,743 \end{aligned}$

Kappa = reduction factor for distortional buckling

Calculation of effective thickness

t₁, t₂ and t₃ are the thicknesses of Part (1) and (2) $t_1 = 2 \times \rho_c \times \chi = 2 \times 0.811 \times 0.743 = 1.205mm$ $t_2 = 2 \times \rho_c \times \chi = 2 \times 0.899 \times 0.743 = 1.336mm$ $t_3 = 2 \times \rho_c = 2 \times 0.899 = 1.798mm$


Part 4-5

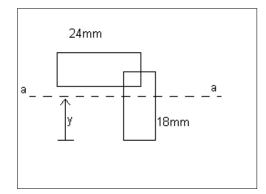
Step 1: calculation of spring stiffness

$$c = c_{s} = \frac{1}{y_{s}}$$
$$y_{s} = \frac{4(1 - v^{2})b_{1}^{3}}{Et^{3}} + \frac{b_{1}^{2}}{c_{3}}$$
$$c_{3} = \sum \frac{\alpha Et_{ad}^{3}}{12(1 - v^{2})b_{p,ad}}$$

 $\begin{array}{ll} \mbox{With:} & \alpha = 3 \\ \mbox{E} = 70000 \mbox{ N/mm}^2 \\ \mbox{v} = 0,3 \\ t_{ad} = 2 \mbox{ mm} \\ \mbox{b}_{p,ad} = 200 \mbox{ mm} \mbox{ (thickness of Part 3)} \end{array}$

Thus this gives: $c_3 = \frac{2 \times 70000 \times 2^3}{12(1-0,3^2) \times 200} = 512,82$ Nrad

$$b_1 = \frac{\frac{(63 \times 2) \times \frac{63}{2} + (18 \times 2) \times 63}{(63 \times 2) + (18 \times 2)} = 38,5mm$$


$$y_s = \frac{4 \times (1 - 0.3^2) \times 368.5^3}{70000 \times 2^3} + \frac{38.5^2}{512.82} = 3,2613 \, mm^2 / N$$

$$c = c_s = \frac{1}{y_s} = \frac{1}{3,26} = 0,3066N / mm^2$$

Step 2: calculation of Area and Second moment of area

=> half of the adjacent member = $\frac{63}{2}mm$

$$p_c$$
 for Part (4) = 0, 851
 $A_r = 18 \times 2 + \frac{63}{2} \times 2 \times 0,851 = 89,613 \, mm^2$

 b_{eff} = For RUO reinforcement taken as 12xt t = 2mm

=> b_{eff} = 24mm

$$y = \frac{(24 \times 2) \times 18 + (18 \times 2) \times \frac{18}{2}}{(24 \times 2) + (18 \times 2)} = 14,14 \text{ mm}$$
$$I_r = \frac{24 \times 2^3}{12} + (24 \times 2) \times (18 - 14,14)^2$$
$$+ \frac{2 \times 18^3}{12} + (18 \times 2) \times (14,14 - \frac{18}{2})^2 = 2654,29 \text{ mm}^4$$

Step 3: calculation of stiffener buckling load

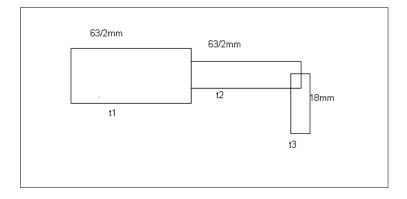
$$N_{r,cr} = 2 \times \sqrt{c \times E \times I_r} = 2 \times \sqrt{0,3066 \times 70000 \times 2654,29} = 15095,8N$$

 $\lambda_c = \sqrt{\frac{f_0 \times A_r}{N_{r,cr}}} = \sqrt{\frac{205 \times 89,613}{15095,8}} = 1,103$

$$\alpha = 0,2$$

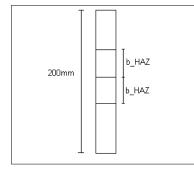
$$\lambda_0 = 0,60$$

$$\Rightarrow \lambda_0 > \lambda_0$$


$$\Rightarrow \phi = 0,50 \times (1+0,2 \times (1,103 - 0,6) + 1,103^2) = 1,159$$

$$\Rightarrow \chi = \frac{1}{\phi + \sqrt{\phi^2 - \lambda_c^2}} = 0,661$$

Kappa = reduction factor for distortional buckling


Calculation of effective thickness

t₁, t₂ and t₃ are the thicknesses Part (4) and (5) $t_1 = 2 \times \rho_c = 2 \times 0.851 = 1.702mm$ $t_2 = 2 \times \rho_c \times \chi = 2 \times 0.851 \times 0.661 = 1.125mm$ $t_3 = 2 \times \rho_c \times \chi = 2 \times 0.866 \times 0.661 = 1.145mm$

Reduction factor phaz for weld effects

The weld is located in the middle of Part (3)

Data: t = 2mm MIG-weld: Following Ref [1] 6.1.6.3:

(3) For a MIG weld laid on unheated material, and with interpass cooling to 60° C or less when multi-pass welds are laid, values of b_{haz} are as follows:

 $\begin{array}{ll} 0 < t \le 6 \mbox{ mm:} & b_{\rm haz} = 20 \mbox{ mm} \\ 6 < t \le 12 \mbox{ mm:} & b_{\rm haz} = 30 \mbox{ mm} \\ 12 < t \le 25 \mbox{ mm:} & b_{\rm haz} = 35 \mbox{ mm} \\ t > 25 \mbox{ mm:} & b_{\rm haz} = 40 \mbox{ mm} \end{array}$

 $0 < t \le 6mm \Longrightarrow b_{HAZ} = 20mm$

Temperature (6xxx alloy):

$$\alpha_2 = 1 + \frac{90 - 60}{120} = 1,25$$

Thus this gives: $b_{HAZ} = 1,25 \times 20 = 25mm \Longrightarrow HAZ - zone = 2 \times b_{HAZ} = 50mm$

$$\rho_{0,HAZ} = \frac{f_{0,HAZ}}{f_0} = \frac{125}{205} = 0,610$$

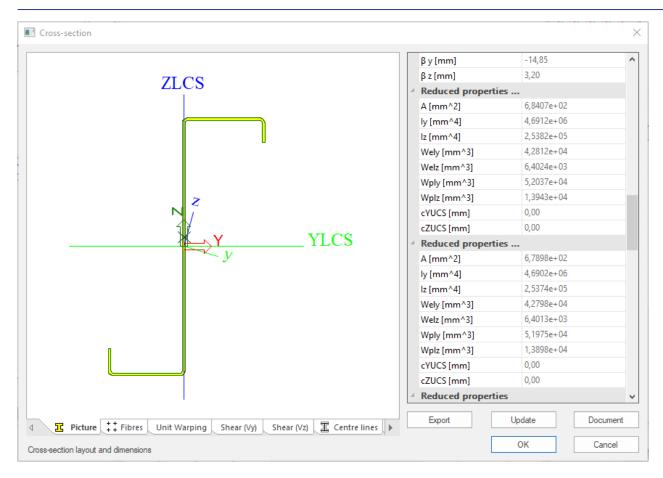
 ρ_c in Part (3) = 0,296. This means that Local Buckling is limiting and not the HAZ-effect ($\rho_{HAZ} = 0,61$)

Thickness of Part (3):

 $t_1 = 2 \times \rho_c \times \chi = 2 \times 0,296 = 0,592$

Calculation of effective Area for uniform compression (N-)

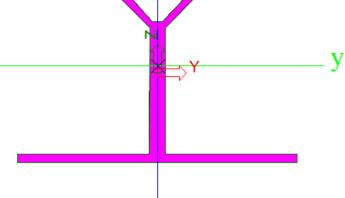
Part (1): $20 \times 1,205 = 24,1mm^2$ Part (2): $\frac{58/2 \times 1,336 = 38,7mm^2}{58/2 \times 1,798 = 52,1mm^2}$ $75 \times 0,592 = 44,4mm^2$ Part (3): $50 \times 0,592 = 29,6mm^2$ $75 \times 0,592 = 44,4mm^2$ Part (4): $\frac{63}{2} \times 1,702 = 53,6mm^2$ $\frac{63}{2} \times 1,064 = 35,4mm^2$ Part (5): $18 \times 1,145 = 20,6mm^2$


The total effective Area is the sum of the above values = 343 mm²

Comparison with SCIA Engineer

Via 'Cross-section' > 'Initial shape' > 'Effective section', the user can manually check the calculated classification, reduction factors and intermediate results.

Reduced section analysis	×
N [kN] -1,00 My [kN] 0,00 Mz [kN] 0,00	
Actions	
Refresh >>>	
Edit initial shape >>>	
Preview >>>	OK Cancel


Ir [mm ⁴]	887,51	00'00		0,00			0,00		1893,82	
Ar [mm ²]	92,17	0,00		00'0			0,00		89,64	
Reinf. ID	0	0		0			0		0	
Ro	0,348	0,386	0,900	0,296	0,296	0,296	0,851	0,493	0,501	
Ro haz	1,000	1,000	1,000	1,000	0,610	1,000	1,000	1,000	1,000	
CM	0,429	0,429	1,000	1,000	1,000	1,000	1,000	0,579	0,579	
Ro c	0,812	0,900	0,900	0,296	0,296	0,296	0,851	0,851	0,866	
End. x [mm]	20,00	29,00	58,00	75,00	125,00	200,00	31,50	63,00	18,00	
Beg. x [mm]	00'0	00'0	29,00	00'0	75,00	125,00	00'0	31,50	0,00	
Class	4	4		4			4		4	
Beta3	6,626	24,295		19,878			24,295		6,626	
Beta2	4,969 (17,669		14,356			17,669		4,969 6	
Betal	3, 313 4	12,147 1		9, 939			12,147 1		3,313 4	
Beta	10,000	29,000		100,000			31,500		9,000	
C2	24,000 1	220,000 2		198,000 1			220,000 3		24,000 9	
CI				000'63						
Sigma End [kN/m ²]	-1392,755 10,000	-1392,755 32,000		-1392,755 29,000			-1392,755 32,000		-1392,755 10,000	
Sigma Beg [kN/m ²]	-1392,755	-1392,755		-1392,755			-1392,755		-1392,755	
psi	1,000	1,000		1,000			1,000		1,000	
pl	-	2		e			4		5	
Parts		4								

General Cross-section

> Example

wsa 003 (thin-walled cross-section)
 read profile from DWG-file (dwg profile.dwg) convert into thin-walled representation to be used in Aluminium Check. set scale, select polylines, select opening, import, convert to thin-walled representation
- only after this, reduced shape can be used
Z

SLS check

Nodal displacement

> Example

wsa_001a (nodal displacement)

- SLS combinations
- Limit for horizontal deflection δ for Beam B1 is h/150 \rightarrow 5500/150 = 36,7 mm Maximum horizontal deformation = 21 mm < 36,7 mm

Displacement of nodes

Linear calculation, Extreme : Global Selection : All Combinations : SLS

Node	Case	Ux	Uz
		[mm]	[mm]
N4	SLS/2	-20,5	0,3
N6	SLS/3	21,1	0,2
N4	SLS/4	0,3	-0,3
N4	SLS/5	-19,7	0,3

Relative deformations

For each beam type, limiting values for the relative deflections are set, using the menu 'Aluminium' > 'Beams' > 'Aluminium Setup' > 'Relative deformation'.

With the option 'Aluminium' > 'Beams' > 'Relative deformation', the relative deformations can be checked. The relative deformations are given as absolute value, relative value related to the span, or as unity check related to the limit for the relative value to the span.

Aluminium Aluminium Aliminium Aliminium Member check Relative deformation Alternative values Buckling defaults General [-] Column [-] Column [-] Secondary column [-]	 Aluminium Aluminium Aluminium Member check Relative deformation Alternative values Buckling defaults Member check Eeneral [-] Column [-] Column [-] Column [-] Column [-] Secondary column [-] Secondary column [-] Column [-]	
Member check EN 1999-1-1 Relative deformation Relative deformation Buckling defaults Relative deformation General [-] 200,00 Beam [-] 200,00 Column [-] 200,00 Gable column [-] 200,00 Secondary column [-] 200,00 Refer [-] 200,00 Wall bracing [-] 200,00 Truss diagonal [-] 200,00 Plete rib [-] 200,00 Plete rib [-] 200,00	Member check EN 1999-1-1 Relative deformation Iternative values Buckling defaults General [-] 200,00 General [-] 200,00 Column [-] 200,00 Gable column [-] 200,00 Secondary column [-] 200,00 Refer [-] 200,00 Refer [-] 200,00 Refer [-] 200,00 Refer [-] 200,00 Wall bracing [-] 200,00 Wall bracing [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00	
Alternative values Relative deformation Buckling defaults General [-] 200,00 Beam [-] 200,00 Column [-] 200,00 Gable column [-] 200,00 Secondary column [-] 200,00 Rafter [-] 200,00 Purlin [-] 200,00 Roft bracing [-] 200,00 Wall bracing [-] 200,00 Wall bracing [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plater nb[-] 200,00	Attendative values Relative deformation Attendative values General [-] 200,00 Beam [-] 200,00 Column [-] 200,00 Gable column [-] 200,00 Secondary column [-] 200,00 Secondary column [-] 200,00 Rafter [-] 200,00 Purlin [-] 200,00 Rof bracing [-] 200,00 Wall bracing [-] 200,00 Gitt [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00	
General [-] 200,00 Beam [-] 200,00 Column [-] 200,00 Gable column [-] 200,00 Secondary column [-] 200,00 Rafter [-] 200,00 Purlin [-] 200,00 Roft bracing [-] 200,00 Wall bracing [-] 200,00 Gint [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00	General [-] 200,00 Beam [-] 200,00 Column [-] 200,00 Gable column [-] 200,00 Secondary column [-] 200,00 Rafter [-] 200,00 Purlin [-] 200,00 Roft bracing [-] 200,00 Wall bracing [-] 200,00 Gint [-] 200,00 Truss chord [-] 200,00 Truss chord [-] 200,00 Plate rib [-] 200,00 P late rib [-] 200,00	
Column [-] 200,00 Gable column [-] 200,00 Secondary column [-] 200,00 Rafter [-] 200,00 Purlin [-] 200,00 Roof bracing [-] 200,00 Wall bracing [-] 200,00 Girt [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plete rib [-] 200,00	Column [-] 200,00 Gable column [-] 200,00 Secondary column [-] 200,00 Rafter [-] 200,00 Purlin [-] 200,00 Roof bracing [-] 200,00 Wall bracing [-] 200,00 Girt [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plete rib [-] 200,00	
Gable column [-] 200,00 Secondary column [-] 200,00 Rafter [-] 200,00 Purlin [-] 200,00 Wall bracing [-] 200,00 Gitt [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plet rib [-] 200,00 Plet rib [-] 200,00	Gable column [-] 200,00 Secondary column [-] 200,00 Rafter [-] 200,00 Purtin [-] 200,00 Wall bracing [-] 200,00 Gitt [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Pleter in [-] 200,00 Pleter in [-] 200,00	
Secondary column [-] 200,00 Rafter [-] 200,00 Purlin [-] 200,00 Roof bracing [-] 200,00 Wall bracing [-] 200,00 Gint [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plet nib [-] 200,00 Plet nib [-] 200,00	Secondary column [-] 200,00 Rafter [-] 200,00 Purlin [-] 200,00 Roof bracing [-] 200,00 Wall bracing [-] 200,00 Gint [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plet rib [-] 200,00 Plet rib [-] 200,00	
Rafter [-] 200,00 Purlin [-] 200,00 Roof bracing [-] 200,00 Wall bracing [-] 200,00 Girt [-] 200,00 Truss chord [-] 200,00 Plate rib [-] 200,00 ▶ Alternative values	Rafter [-] 200,00 Purlin [-] 200,00 Roof bracing [-] 200,00 Wall bracing [-] 200,00 Girt [-] 200,00 Truss chord [-] 200,00 Plate rib [-] 200,00 ▶ Alternative values	
Purifin [-] 200,00 Roof bracing [-] 200,00 Wall bracing [-] 200,00 Girt [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00 P Alternative values P	Puriin [-] 200,00 Roof bracing [-] 200,00 Wall bracing [-] 200,00 Girt [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00 P Alternative values Value	
Roof bracing [-] 200,00 Wall bracing [-] 200,00 Gint [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00 ▷ Alternative values	Roof bracing [-] 200,00 Wall bracing [-] 200,00 Gint [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate nib [-] 200,00 P Alternative values 200,00	
Wall bracing [-] 200,00 Girt [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00 P Alternative values 200,00	Wall bracing [-] 200,00 Girt [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00 Plate rib [-] 200,00	
Girt [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00 > Alternative values 200,00	Girt [-] 200,00 Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00 > Alternative values 200,00	
Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00 > Alternative values 200,00	Truss chord [-] 200,00 Truss diagonal [-] 200,00 Plate rib [-] 200,00 P Alternative values 200,00	
Truss diagonal [-] 200,00 Plate rib [-] 200,00 > Alternative values	Truss diagonal [-] 200,00 Plate rib [-] 200,00 > Atternative values 200,00	
Plate rib [-] 200,00 P Alternative values	Plate rib [-] 200,00 Alternative values	
Alternative values	Alternative values	
	▷ Buckling defaults	
Buckling defaults		
	Load default non-NA parameters Load default NA parameters	

> Example

Γ	wsa_001b (relative deformation)
	 Set beam type for member B5 & B6: Beam and Rafter Set limits for relative deformations: Beam 1/1000 and Rafter 1/500 Relative deformation check on member B5 & B6

Relative deformation

Linear calculation, Extreme : Global, System : LCS Selection : B5, B6 Combinations : SLS

Case - combination	Member	dx [m]	uz [mm]	Rel uz [1/xx]	Check uz [-]
SLS/1	B6	5,064	-6,2	1/1629	0,31
SLS/2	B6	5,064	8,9	1/1136	0,44
SLS/3	B5	2,765	8,5	1/713	1,40
SLS/4	B5	2,765	-3,3	1/1849	0,54

🗴 👔 🖉 II ABC | ABC | 🔜 | 📺 | 📺 🗐 👘 🖓 🕂

- B5:	L = 6.1m \rightarrow limit: 6083/1000 = 6,1mm
	Uz = 8.5mm → 8.5/6083 = 1/715 Check: (1/713)/(1/1000) = 1,40
- B6:	L = 10.127m → limit: 10127/500 = 20,3mm
	Uz = 8.9mm → 8.9/10127 = 1/1137 Check: (1/1136)/(1/500) = 0,44

Additional Data

Setup

The national annexes of the Aluminium Code Check can be adapted under 'Project data' > 'National annex' > 'EN 1999: Design of aluminium structures' > 'EN 1999-1-1 (General structural rules)'. In this window the following options can be adapted:

- Bow imperfections for each class
- Member imperfection
- Partial Safety Factors
- Resistance Yield Criterion

Aluminium setup		×
- Standard EN	Name	Standard EN
Aluminium	 Aluminium 	
Member crieck	Member check	EN 1999-1-1
	Bow Imperfections	EN 1999-1-1: 5.3.2(3) b)
	✓ e0/L Class A elastic	
	Value [-]	300,00
	✓ e0/L Class A plastic	
	Value [-]	250,00
	✓ e0/L Class B elastic	
	Value [-]	200,00
	✓ e0/L Class B plastic	
	Value [-]	150,00
	4 Member Imperfection	EN 1999-1-1: 5.3.4(3)
	4 k	
	Value [-]	0,50
	4 Partial Safety Factors	EN 1999-1-1: 6.1.3(1)
	✓ Gamma M1	
	Value [-]	1,10
	✓ Gamma M2	
	Value [-]	1,25
	4 Resistance Yield Criterion	EN 1999-1-1: 6.2.1(5)
	4 C	
	Value [-]	1,20
		Load default NA parameters OK Cancel
		Coad default NA parameters OK Cancer

Using 'Aluminium' > 'Beams' > 'Aluminium Setup', the user can change the basic setup-parameters for the Aluminium Code Check. A change of these values will affect all members.

In 'Member check', the following parameters can be adapted:

- Sway type
- Buckling length ratios
- Calculation of xs for unknown buckling shape
- Calculation of xs for known buckling shape

Next to these parameters, the user can input:

Elastic check only

All sections will be classified as class 3.

Section check only

Only section check is performed. No stability check is performed.

Flexural buckling accounted for by 2nd order calculation

When this option is selected, there is no buckling check performed. Only LTB check is carried out in the stability check.

In 'Relative deformation', the user can input admissible deformations for different type of beams.

In 'Alternative values', the user can choose between alternative values for different parameters according to EC-EN 1999-1-1.

In 'Buckling defaults', the user can input the default buckling system applied on all members. Via the property window of a separate beam, the buckling parameters can be changed locally.

Aluminium setup					×
□ Standard EN	Name	Standa	ard EN		
- Aluminium Member check	 Aluminium 				
	Member check	EN 19	99-1-1		
Alternative values	Relative deformation				
Buckling defaults	Alternative values				
	Buckling defaults				
	4 Buckling systems relation				
	ZZ	22			-
	yz	22			-
	lt	22			*
	4 Relative deformation syst	ems relation			
	def y	ZZ			-
	def z	уу			Ŧ
	ky factor	Calcul			Ŧ
	kz factor	Calcul			-
	Point of load application	In she	ar center		-
		Load default non-NA parameters	Load default NA parameters	OK	Cancel

Aluminium member data

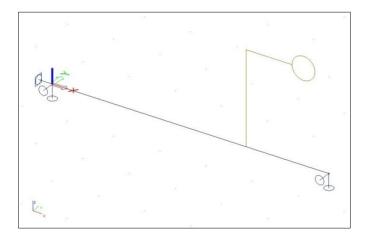
The default values used in the Setup menu can be overruled for a specific member using Aluminium member data.

Section classification

For the selected members, the section classification generated by the program, will be overruled by this user settings

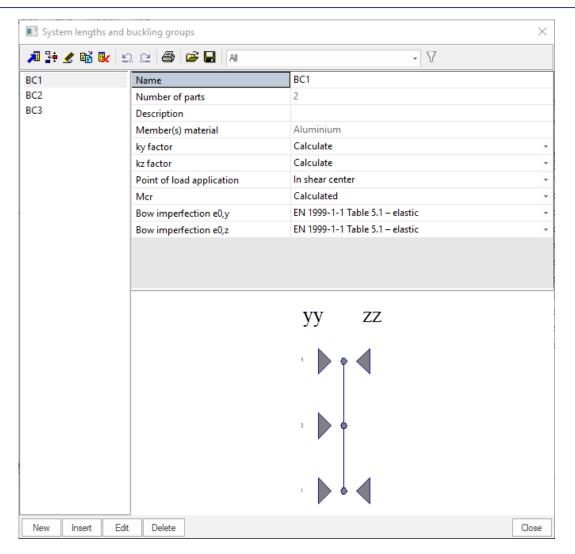
Elastic check only

The selected members will be classified as class 3.


Section check only

For the selected members, only section check is performed. No stability check is performed.

<u>Field</u>


Only the internal forces inside the field are considered during the steel code check

Aluminium member data			×
	Name	MD1	
	Section classification	Class 2 (compact section)	-
	Elastic check only	No	-
	Section check only	Yes	-
	Field		
	Position Rela	Rela	-
	From begin (x)	0	
	From end (x')	0	
i x			
		ОК	Cancel

System lengths and buckling groups

System lengths and buckling groups is a library dialog in which all the defined buckling groups (BG's) are gathered. It gives the user an overview of all the buckling groups and allows editing of the buckling settings defined in the buckling groups.

On the left part a list is presented of the defined buckling groups within the project. The list allows multi selection which enables the user to modify common settings at once in that dialog.

Within a buckling group, you can edit ky factor, kz factor, point of load application, the critical elastic moment Mcr, bow imperfection e0,y and bow imperfection e0,z.

It is possible to create a new buckling group at the bottom of the list with the option 'New' and 'Insert' a new buckling group under the current selected buckling group.

With the option 'Edit', the user can edit the currently selected buckling group in the dialog 'System lengths and buckling settings'.

Since SCIA Engineer 18.0 a new dialog is introduced for applying buckling settings on a specific buckling system called **System lengths and buckling settings**. Prior to SCIA Engineer 18.0 there was a dialog for the buckling settings called "buckling and relative lengths" which offered similar settings but without the graphical window and even without the results.

System lengths and buckling settings can be accessed either:

via Libraries > Structure, analysis > System lengths and buckling groups > click on new for creating a new buckling group or click on edit to modify an existing buckling group.
 via 1D-member property > System lengths and buckling settings.

The buckling related settings that are configured in System lengths and buckling settings are saved into a buckling group (BG) which is listed in the "System lengths and buckling groups" dialog and also when assigned it can be seen in the 1D-member properties as shown in the example below:

Buckling			
System lengths and buck	BG1	Ŧ	
Material and no. of parts	Aluminium - 2		
Secondary member			

The user can open 'System lengths and buckling settings' dialog.

System lengths and buckling settings				\times
: 🖉 🥖 🔺 🚝 🎬 🧱 🗸 : 🏩 🖡 .				
	Settings Results			
	Name BG1			
	Buckling span Deflection span			
	● y-y O Deflection y = z-z ▼			
< >	⊖ z-z = Z-Z ▼ ⊖ Deflection z = y-y ▼			
	○ y·z = Z-Z ▼ ○ LTB = Z-Z ▼			
	> Active buckling constraints			
	 Span settings 			
	Buckling length factors Settings per span for y-y axis ky factor Calculate			
	Sway y-y Custom			
< >	Member imperfection in 2nd order analysis			
	Bow imperfection e0.y EN 1999-1-1 Table 5 *			
X				
X 🔁 🍳 🖓 😂 🌣				
	Sa	e	Canc	el

The left part of the dialog gives the user a graphical representation of the 1D-members in the buckling system with their buckling constraints and information about the sway settings per span. It is not only a representation of the above mentioned settings but it also allows editing directly in that graphical window by clicking on the buckling constraints to set them to fixed/free or by clicking on the sway symbols per span to set them to yes/no/acc. to material setup.

Members that belong to the buckling system are visualized with a black line while the other members within the project are greyed out. This gives the user an overview on which members are using that specific buckling group. Also the buckling constraints symbols (red triangles or rectangles) and the sway symbols are only visualized on 1 system line (first system line if the dialog is accessed from System lengths and buckling groups or the system line of the current selection if it is accessed from the 1D-member property System lengths and buckling settings).

The buckling settings are visualized within the dialog based on the selected buckling span or deflection span. It defines the context of the settings that are visualized. For example when the y-y span setting is selected the graphical window shows the buckling constraints for y-y as well as the sway settings for y-y. Also the span settings group shows the settings in the y-y context.

System lengths and buckling settings		
i Ø 🔗 🛓 🖾 🎬 🦉 🖬 🗸 i 🎪 🗛 🗸		
	Settings Results Name BG1 Buckling span Deflection span • y-y • Deflection y = • y-y • Deflection z = • y-y = z-z = • UTB = z-z =	
	Active buckling constraints y-y z-z 1 ✓ 2 ✓ 3 ✓	
	✓ Span settings Buckling length factors Settings per span for y y axis ky factor Calculate Sway y-y Custom Member imperfection in 2nd order analysis Bow imperfection e0.y EN 1999-1-1 Table 5	
	Save	Cancel

The user can do the same for z-z by selecting 'z-z' under buckling span in the top section of the dialog.

The Active buckling constraints table allows the user to modify the buckling or deflection constraints in a tabular form. An alternative would be to do it per buckling span (y-y, z-z,...) in the graphical window by clicking on the red restraint symbols (triangles/rectangles). An overview of all active buckling constraints are presented in the table.

Under the span settings group you can find all the buckling settings related to the spans. The span (y-y, z-z, y-z, LTB) settings that are shown under span settings depend on the selection under buckling span in the top section of the dialog.

In 'Advanced settings' section, the user can edit Lateral Torsional Buckling settings:

- Point of load application: The position on which the load will be applied on the 1D-member (on top, in shear center, on bottom, always destabilising, always stabilising). This setting influences the Mcr calculation for the LTB check.
- Mcr: this setting can be set to calculate in order to calculate it or input to input it manually under the span settings when using the buckling span LTB.

System lengths and buckling settings			×
· 0 🕖 🛓 🖾 🎬 🔡 🛃 . · · 🚳 🐴 .			
	Settings Results		
	Name BG1		
	Buckling span Deflection span		
	z-z Deflection z = y-y		
	○ y-2 = Z-Z ▼		
< >	○ LTB = z-z *		
	Active buckling constraints		
	✓ Span settings		1
	Buckling length factors Settings per span for y-y axis ky factor Calculate * Sway y-y		
	Sway y-y Custom *		
	Member imperfection in 2nd order analysis		
	Bow imperfection e0.y EN 1999-1-1 Table 5 *		
< >			
	 Advanced settings 		
	Lateral Torsional Buckling Point of load application In shear center		
	Mcr Calculated *		
X			
[Q] (\$) 2 2 x	*	•	
		Save Cancel	

The results tab is available if both conditions are fulfilled:

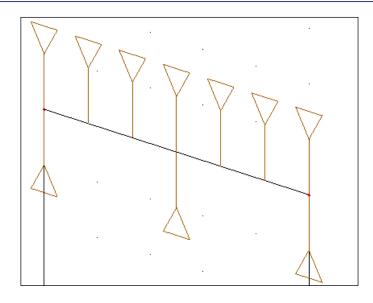
- the buckling group is assigned to a member or a group of members
- the project is calculated (linear calculation)

The results table can be sent to the Engineering report if needed by using the designated icon located at the top section.

Member check data

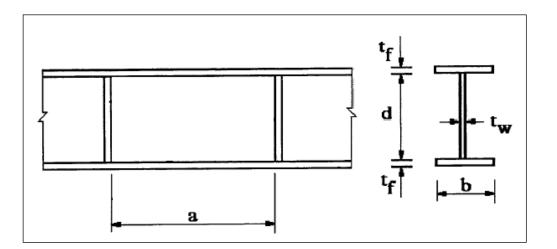
Transverse welds

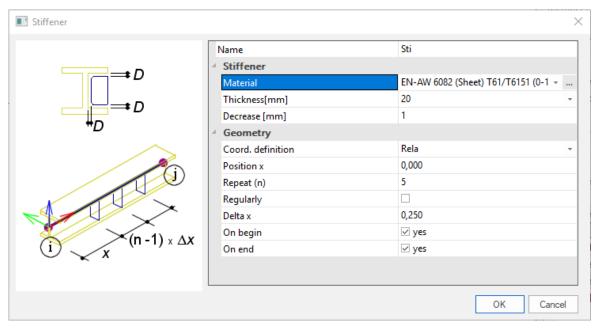
Via 'Transverse welds', the user can input different welds in certain sections of the member. Data needed for calculation of these welds are:

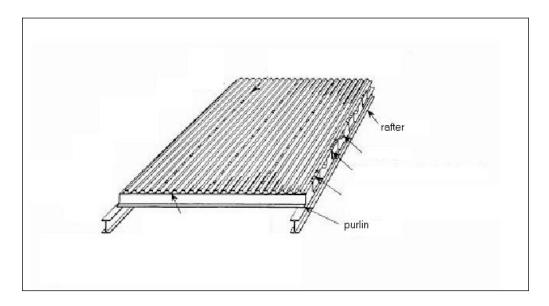

- Weld method: MIG or TIG
- Weld material: type of alloy
- Temperature of welding
- Geometry: position of weld in member

Transverse weld			×
	Name	TW1	
	✓ HAZ data		
+z 🖡	Weld Method	MIG	-
	Weld Material	бхох alloy	-
-z •	Temperature [°C]	120,00	
	4 Geometry		
	Coord. definition	Rela	-
	Position x	0,200	
	Origin	From start	-
	Repeat (n)	1	
i x (n -1) x Δλ			
		OK	Cancel

LTB restraints


The default LTB data are overruled by the LTB restraints. Fixed LTB restraints are defined on top flange or on bottom flange. The LTB lengths for the compressed flange are taken as distance between these restraints. The LTB moments factors are calculated between these restraints.


ITB Restraints		×
	Name	LTBA1
	Position z	+ Z
+z 🖡 🚽	Geometry	
	Coord. definition	Rela 👻
-z 🔻	Position x	0,000
_	Repeat (n)	4
	Regularly	
	Delta x	0,333
	On begin	☑ yes
	On end	☑ yes
$(n-1) \times \Delta x$		
		OK Cancel


Stiffeners

The stiffeners define the field dimensions (a,d) which are only relevant for the shear buckling check. When no stiffeners are defined, the value for 'a' is taken equal to the member length.

Sheeting (diaphragm)

,

Sheeting			×
Φ	Name	SH1	
	Sheeting LIB	Sheet1	·
	Position z	+ z	-
+24	k	1 and 2 spans	-
	Sheeting position	Positive	-
	Bolt position	Top flange	-
-z * (i) x1 x2	Bolt pitch	br	-
- ×	Lf - frame distance [m]	3,000	
$\frac{br}{2br}$	Ld - sheeting length [m]	1,000	
	4 Geometry		
	Coord. definition	Rela	-
	Position x1	0,000	
	Position x2	1,000	
Lf Ld	Origin	From start	-
××		0	K Cancel

The settings for the diaphragm are:

Sheeting Lib	Type of defined sheeting.
k	The value of coefficient k depends on the number of spans of the diaphragm:
	k = 2 for 1 or 2 spans,

	k = 4 for 3 or more spans.			
	The position of the diaphragm may be either positive or negative.			
position	Positive means that the diaphragm is assembled in a way so that the width is greater at the top side.			
	Negative means that the diaphragm is assembled in a way so that the width is greater at the bottom side.			
Bolt position	Bolts may be located either at the top or bottom side of the diaphragm.			
Bold pitch	Bolts may be either:			
	n every rib (i.e. "br"),			
	n each second rib (i.e. "2 br").			
Frame distance	he distance of frames			
Length	The length of the diaphragm (shear field.)			
Geometry				
Position x1	Value x1 specifies the begin-point of the sheeting on the beam.			
Position x2	Value x1 specifies the end-point of the sheeting on the beam.			
Co-ordinate definition	Defines the co-ordinate system in which the position x is inputted.			
Origin	Defines the origin from which the position x is measured.			

ULS Check

Aluminium Slenderness

Via 'Aluminium' > 'Slenderness data', the user can ask for the system length, buckling ratio, buckling length, relative slenderness and bow imperfection according to the 2 local axis. In addition, also the Lateral Torsional Buckling length and the torsion buckling length can be displayed.

Slenderness data Linear calculation										
Member	CS Name	Part	Sway y	Ly [m]	ky [-]	/ly [m]	Lam y [-]	e0,y [mm]	iyz [m]	LTB [m]
			Sway z	Lz [m]	kz [-]	lz [m]	Lam z	e0,z [mm]		DÍ
B1	CS1	1	Yes	6,000	1,00	6,000	73,77	0,0	6,000	6,000
			No	6,000	1,00	6,000	316,99	0,0		

Section check

Partial safety factors

The partial safety factors may be chosen in the National Annex. Recommend values are given in Table 6.1 (Ref.[1]).

Resistance of cross-sections whatever the class is	γм1 = 1,10
Resistance of member to instability assessed by member checks	γм1 = 1,10
Resistance of cross-sections in tension to fracture	γм2 = 1,25

Using the menu 'Project data' > 'National annex' > 'EN 1999: Design of aluminium structures' > 'EN 1999-1-1 (general structural rules)', the user can input values for γ_{M1} and γ_{M2} .

Aluminium setup			
⊟- Standard EN	Name	Standard EN	
Aluminium	4 Aluminium		
Member crieck	4 Member check	EN 1999-1-1	
	Bow Imperfections	EN 1999-1-1: 5.3.2(3) b)	
	Member Imperfection	EN 1999-1-1: 5.3.4(3)	
	Partial Safety Factors	EN 1999-1-1: 6.1.3(1)	
	4 Gamma M1		
	Value [-]	1,10	
	4 Gamma M2		
	Value [-]	1,25	
	Resistance Yield Criterion	EN 1999-1-1: 6.2.1(5)	

Bending moments

According to section 6.2.5.1 Ref.[1], alternative values for $\alpha_{3,u}$ and $\alpha_{3,w}$ can be chosen. In SCIA Engineer, the user can input these alternative values using 'Aluminium' > 'Beams' > 'Aluminium Setup' > 'Alternative values'.

Standard EN	Relative deformation		
- Aluminium Member check	Alternative values		
- Relative deformation	🗉 Alpha 3,u	EN 1999-1-1: 6.2.5.1 (2)	
··· Alternative values	Value	Default	
Buckling defaults	4 Alpha 3,w	EN 1999-1-1: 6.2.5.1 (2)	
	Value	Default	
	4 Eta 0	EN 1999-1-1: 6.2.5.1 (2)	
	Value	Default	
	4 Gamma 0	EN 1999-1-1: 6.2.9.1 (1)	
	Value	Default	
	4 Xi 0	EN 1999-1-1: 6.2.9.1 (1)	
	Value	Default	
	⊿ Psi	EN 1999-1-1: 6.2.9.2 (1)	
	Value	Default	
	✓ Eta c	EN 1999-1-1: 6.3.3.1 (1), (2)	
	Value	Default	
	⊿ Xi yc	EN 1999-1-1: 6.3.3.1 (1)	
	Value	Default	
	[⊿] Xi zc	EN 1999-1-1: 6.3.3.1 (1), (2)	
	Value	Default	
	⊿ Psic	EN 1999-1-1: 6.3.3.1 (3)	
	Value	Default	
	₄ Eta c	EN 1999-1-1: 6.3.3.2 (1)	
	Value	Default	
	⊿ Xi zc	EN 1999-1-1: 6.3.3.2 (1)	
	Value	Default	
	Buckling defaults		
	 Zeta c Value Xi zc Value 	EN 1999-1-1: 6.3.3.2 (1) Default EN 1999-1-1: 6.3.3.2 (1)	

Shear

The design value of the shear force V_{Ed} at each cross-section shall satisfy (Ref.[1]):

$$\frac{V_{Ed}}{V_{Rd}} \le 1$$

Where $V_{\mbox{\scriptsize Rd}}$ is the design shear resistance of the cross-section.

Slender and non-slender sections

The formulas to be used in the shear check are dependent on the slenderness of the cross-section parts.

For each part i the slenderness β is calculated as follows:

$$\begin{split} \beta_i = & \left(\frac{h_w}{t_w}\right)_i = \left(\frac{x_{end} - x_{beg}}{t}\right)_i \\ \text{With:} & \begin{array}{c} x_{\text{end}} & \\ x_{beg} & \\ t & \end{array} \begin{array}{c} \text{End position of plate i .} \\ \text{Begin position of plate i.} \\ \text{Thickness of plate i.} \\ \end{split}$$

For each part i the slenderness β is then compared to the limit 39ϵ

With $\varepsilon = \sqrt{\frac{250}{f_0}}$ and f₀ in N/mm²

$\beta_i \leq 39\varepsilon$ => Non-slender plate

 $\beta_i > 39\varepsilon \implies$ Slender plate

I) All parts are classified as non-slender

$\beta_i \leq 39\varepsilon$

The Shear check shall be verified using art. 6.2.6. Ref.[1]

II)One or more parts are classified as slender

$\beta_i > 39\varepsilon$

The Shear check shall be verified using art. 6.5.5. Ref.[1]. For each part i the shear resistance $V_{Rd,i}$ is calculated.

Non-slender part:

Formula (6.88) Ref.[1] is used with properties calculated from the reduced shape for $N+(\rho_{u,HAZ})$

For Vy: A_{net,y,i} =
$$(x_{end} - x_{beg})_i \cdot \rho_{u,HAZ} \cdot t_i \cdot \cos^2 \alpha$$

For Vz: A_{net,z,i} =
$$(x_{end} - x_{beg})_i \cdot \rho_{u,HAZ} \cdot t_i \cdot \sin^2 \alpha_i$$

With:

h:	i	The number (ID) of the plate
	Xend	End position of plate i
	Xbeg	Begin position of plate i
	t	Thickness of plate i
	ρu,HAZ	Haz reduction factor of plate i
	α	Angle of plate i to the Principal y-y axis

Slender part:

Formula (6.88) Ref.[1] is used with properties calculated from the reduced shape for $N+(\rho_{u,HAZ})$ in the same way as for a non-slender part. => $V_{Rd,i,yield}$

Formula (6.89) is used with **a** the member length or the distance between stiffeners (for I or U-sections)

 $= V_{Rd,i,buckling}$

=> For this slender part, the resulting $V_{Rd,i}$ is taken as the minimum of $V_{Rd,i,yield}$ and $V_{Rd,i,buckling}$

For each part $V_{Rd,i}$ is then determined.

=> The V_{Rd} of the cross-section is then taken as the sum of the resistances $V_{Rd,i}$ of all parts.

$$V_{Rd} = \sum_{i} V_{Rd_i}$$

Note:

For a solid bar, round tube and hollow tube, all parts are taken as non-slender by default and formula (6.31) is applied.

Example

wsa_004 (shear check)

- calculate project - aluminium check, detailed output

Part	Туре	β	39 ε	Slender	Avy,i	Avz,i	VRD,y,yield,i	VRD,z,yield,i
1	RUO	10	43,07	no	2,9	37,1	0,31	4
2		29	43,07	no	53,9	4,1	5,8	0,45
					53,9	4,1	5,8	0,45
3	I	100	43,07	yes	10,5	139,5	1,13	15
					4,6	61,5	0,5	6,61
					10,5	139,5	1,13	15
4	I	31,5	43,07	no	58,5	4,5	6,3	0,48
					58,5	4,5	6,3	0,48
5	RUO	9	43,07	no	2,6	33,4	0,28	3,6

- In addition: for the slender part 3

- a/b = 6000/200 = 30 with a = 6m and b = 200mm and $v_1 = 0,280$

- Sum (VRD,y,yield,i) = 27,44 kN

- Sum (VRD,z,yield,i) = 46,08 kN

- VRD,y = 0,31+11,60+**0,85**+12,60+0,28 = 25,63 kN
- VRD,z = 4,00+0,88+**11,21**+0,96+3,60 = 20,64 kN

Shear check

According to EN 1999-1-1 article 6.5.5 and formula (6.87). Shear force Vy

Part ID	Beta	VRd,Yielding [kN]	VRd,Buckling [kN]
1	10,00	0,31	6 <i>1</i>
2	29,00	11,60	$\Xi > I = I = I$
3	100,00	2,73	0,85
4	31,50	12,60	
5	9,00	0,28 👌	

 Table of values

 Vy,Rd
 25,63
 kN//

 Unity check
 0,22

Shear force Vz

Part ID	Beta	VRd, Yielding [kN]	VRd,Buckling [kN]
1	10,00	4,00	
2	29,00	0,88	
3	100,00	36,11	11,21
4 1	31,50	0,96	
5	9,00	3,60	

Table of v	alues	
Vz,Rd	20,64	kN
Unity chec	k 0,08	-

Calculation of Shear Area

The calculation of the shear area is dependent on the cross-section type. The calculation is done using the reduced shape for $N+(\rho_{0,HAZ})$

a) Solid bar and round tube

The shear area is calculated using art. 6.2.6 and formula (6.31) Ref.[1]:

$A_{v} = \eta_{v}$	$\cdot A_{e}$	
With:	η_{v}	0,8 for solid section 0,6 for circular section (hollow and solid)
	Ae	Taken as area A calculated using the reduced shape for N+($\rho_{0,HAZ}$)

b) All other Supported sections

For all other sections, the shear area is calculated using art. 6.2.6 and formula (6.30) Ref.[1].

The following adaptation is used to make this formula usable for any initial cross-section shape:

$$A_{vy} = \sum_{i=1}^{n} (x_{end} - x_{beg}) \cdot \rho_{0,HAZ} \cdot t \cdot \cos^{2} \alpha$$
$$A_{vz} = \sum_{i=1}^{n} (x_{end} - x_{beg}) \cdot \rho_{0,HAZ} \cdot t \cdot \sin^{2} \alpha$$

With:

i	The number (ID) of the plate
Xend	End position of plate i
Xbeg	Begin position of plate i
t	Thickness of plate i
ρo,haz	HAZ reduction factor of plate i
α	Angle of plate i to the Principal y-y axis

Should a cross-section be defined in such a way that the shear area A_v (A_{vy} or A_{vz}) is zero, then A_v is taken as **A** calculated using the reduced shape for N+($\rho_{0,HAZ}$).

Note:

For sections without initial shape or numerical sections, none of the above mentioned methods can be applied. In this case, formula (6.29) is used with Av taken as Ay or Az of the gross-section properties.

Torsion with warping

In case warping is taken into account, the combined section check is replaced by an elastic stress check including warping stresses.

$$\sigma_{tot,Ed} \leq \frac{J_0}{\gamma_{M1}}$$

$$\tau_{tot,Ed} \leq \frac{f_0}{\sqrt{3\gamma_{M1}}}$$

$$\sqrt{\sigma_{tot,Ed}^2 + 3\tau_{tot,Ed}^2} \leq \sqrt{C} \frac{f_0}{\gamma_{M1}}$$

$$\sigma_{tot,Ed} = \sigma_{N,Ed} + \sigma_{My,Ed} + \sigma_{Mz,Ed} + \sigma_{w,Ed}$$

$$\tau_{tot,Ed} = \tau_{Vy,Ed} + \tau_{Vz,Ed} + \tau_{t,Ed} + \tau_{w,Ed}$$

With:

fo	0,2% proof strength
O tot,Ed	Total direct stress
$ au_{tot,Ed}$	Total shear stress
γм1	Partial safety factor for resistance of cross-sections
C	Constant (by default 1,2)
$\sigma_{\text{N,Ed}}$	Direct stress due to the axial force on the relevant effective cross- section
О Му,Ed	Direct stress due to the bending moment around y axis on the relevant effective cross-section

$\sigma_{Mz,Ed}$	Direct stress due to the bending moment around z axis on the relevant effective cross-section
O w,Ed	Direct stress due to warping on the gross cross-section
$\tau_{Vy,Ed}$	Shear stress due to shear force in y direction on the gross cross- section
$\tau_{Vz,Ed}$	Shear stress due to shear force in z direction on the gross cross- section
$\tau_{t,\text{Ed}}$	Shear stress due to uniform (St. Venant) torsion on the gross cross- section
$\tau_{w,Ed}$	Shear stress due to warping on the gross cross-section

The direct stress due to warping is given by Ref.[3] 7.4.3.2.3, Ref.[4]. A more detailed explanation can be found in Ref.[20].

Bending, shear and axial force

According to section 6.2.9.1.(1) and 6.2.9.2 (1) Ref.[1], alternative values for γ_0 , η_0 , ϵ_0 and ψ can be chosen. In SCIA Engineer, the user can input these alternative values using 'Aluminium' > 'Beams' > 'Aluminium Setup' > 'Alternative values'.

Localised welds

In case transverse welds are inputted, the extend of the HAZ is calculated as specified in paragraph "Calculation of Reduction factor ρ_{HAZ} effects" of the Aluminium Code Check Theoretical Background and compared to the least width of the cross-section.

The reduction factor ω_0 is then calculated according to art. 6.2.9.3 Ref.[1]. When the width of a member cannot be determined (Numerical section, tube ...) formula (6.44) is applied.

Note:

Since the extend of the HAZ is defined along the member axis, it is important to specify enough sections on average member in the Solver Setup when transverse welds are used. <u>Note:</u>

Formula (6.44) is limited to a maximum of **1,00** in the same way as formula (6.64).

Shear reduction

Where V_{Ed} exceeds 50% of V_{Rd} the design resistances for bending and axial force are reduced using a reduced yield strength as specified in art. 6.2.8 & 6.2.10. Ref.[1].

For Vy the reduction factor ρ_y is calculated For Vz the reduction factor ρ_z is calculated

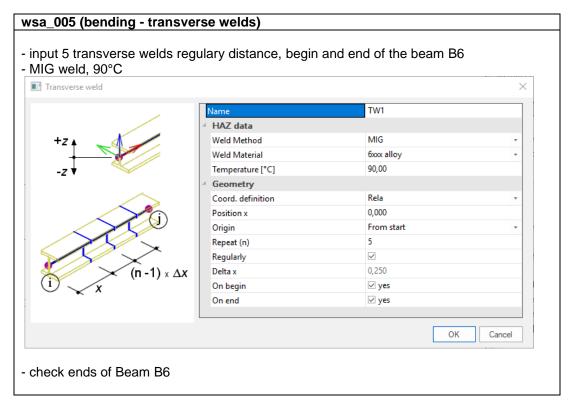
The bending resistance $M_{y,Rd}$ is reduced using ρ_z The bending resistance $M_{z,Rd}$ is reduced using ρ_y

The axial force resistance N_{Rd} is reduced by using the maximum of ρ_y and ρ_z

> Example

wsa_005 (bending - transverse welds)

- calculate project
- aluminium check combination UGT, detailed output of Beam B6
- classification for My- = 4
- check ends of Beam B6
- Combined Bending, Axial force and Shear force Check


Combined Bending, Axial force and Shear force Check.

According to EN 1999-1-1 article 6.2.9.1& 6.2.10 and formula (6.40),(6.41).

1,00		÷
1,00	50	Ňφ
1,00	0, 0	9 O
	1,00 1,00 1,00	1,00 1,00 1,00

Table of values		
w0	1,00	
NRd	1659,85	kN
My,Rd	342,68	kNm
Mz,Rd	47,36	kNm

Unity check (6.40) = 0,00 + 0,08 = 0,08 -Unity check (6.41) = 0,00 + 0,08 + 0,00 = 0,08 -The member satisfies the section check.

Combined Bending, Axial force and Shear force Check.

According to EN 1999-1-1 article 6.2.9.1& 6.2.10 and formula (6.40),(6.41).

Table of values			
Eta0 (6.42a)	1,00		
Gamma0 (6.42b)	-1,00	6 1 6	
Xi 0 (6.42c)	1,00 0	000	
	L m		
Table of values			
w0	0,63		
NRd	1659,85	kŅ	
My,Rd	342,68	kNm	
/ Mz,Rd	47,36	kNm	1
w0 NRd My,Rd	1659,85 342,68	kN kNm kNm	

Unity check (6.40) = 0,00 + 0,12 = 0,13 - 0,00 + 0,12 + 0,00 = 0,13 - 0,00 + 0,12 + 0,00 = 0,13 - 0,00 +

Stability check

Flexural Buckling

General remarks

The different system lengths and sway type have to be introduced. The defaults can be overruled by the user.

During the non-linear analysis, the sway type can be set by user input, or by 'non-sway'. See 'Aluminium' > 'Beams' > 'Aluminium Setup':

Aluminium setup		
Standard EN	Name	Standard EN
Aluminium	4 Aluminium	
Member check Relative deformation	4 Member check	EN 1999-1-1
- Alternative values	⁴ Default sway types	
Buckling defaults	y-y	✓ yes
	z-z	no
	4 Buckling length ratios ky, kz	
	Max. k ratio [-]	10,00
	Max. slenderness [-]	200,00
	2nd order buckling ratios	All non-sway
	Calculation of xs	
	Unknown buckling shape	Use half of buckling length
	Known buckling shape	Use half of buckling length
	✓ General settings	
	Elastic check only	🗆 no
	Section check only	🗆 no
	Flexural buckling accounted for by 2nd order calculation	🗆 no
	Relative deformation	
	Alternative values	
	Buckling defaults	
	Load default non-NA par	ameters Load default NA parameters OK Cancel

Buckling Ratio

General formula

For the calculation of the buckling ratios, some approximate formulas are used. These formulas are treated in reference [5], [6] and [7].

The following formulas are used for the buckling ratios (Ref[7],pp.21):

For a non-sway structure:

$$l'L = \frac{(\rho_1\rho_2 + 5\rho_1 + 5\rho_2 + 24)(\rho_1\rho_2 + 4\rho_1 + 4\rho_2 + 12)2}{(2\rho_1\rho_2 + 11\rho_1 + 5\rho_2 + 24)(2\rho_1\rho_2 + 5\rho_1 + 11\rho_2 + 24)}$$

For a sway structure:

$$l/L = x \sqrt{\frac{\pi^2}{\rho_1 x} + 4}$$

 With:
 L
 System length

 E
 Modulus of Young

I	Moment of inertia
Ci	Stiffness in node i
Mi	Moment in node i
φί	Rotation in node i
$x = \frac{4\rho_1\rho_2}{\pi^2(\rho_1 + \rho_2)}$	$\frac{\pi^2 \rho_1}{1 + 8\rho_1 \rho_2}$

$$\pi (\rho_1 + \rho_2) + \rho_i = \frac{C_i L}{EI}$$
$$C_i = \frac{M_i}{\phi_i}$$

The values for M_i and ϕ_i are approximately determined by the internal forces and the deformations, calculated by load cases which generate deformation forms, having an affinity with the buckling shape. (See also Ref.[8], pp.113 and Ref.[9], pp.112).

The following load cases are considered:

load case 1: on the beams, the local distributed loads qy=1 N/m and qz=-100 N/m are used, on the columns the global distributed loads Qx = 10000 N/m and Qy = 10000 N/m are used. load case 2: on the beams, the local distributed loads qy=-1 N/m and qz=-100 N/m are used, on the columns the global distributed loads Qx = -10000 N/m and Qy=-10000 N/m are used.

The used approach gives good results for frame structures with perpendicular rigid or semi-rigid beam connections. For other cases, the user has to evaluate the presented bucking ratios. In such cases a more refined approach (from stability analysis) can be applied.

Stability analysis

When member buckling data from stability are defined, the critical buckling load N_{cr} for a prismatic member is calculated as follows:

 $N_{cr} = \lambda \cdot N_{Ed}$

Using Euler's formula, the buckling ratio \mathbf{k} can then be determined:

$$N_{cr} = \frac{\pi^2 \cdot E \cdot I}{(k \cdot s)^2} \Longrightarrow k = \frac{1}{s} \cdot \sqrt{\frac{\pi^2 \cdot E \cdot I}{N_{cr}}}$$

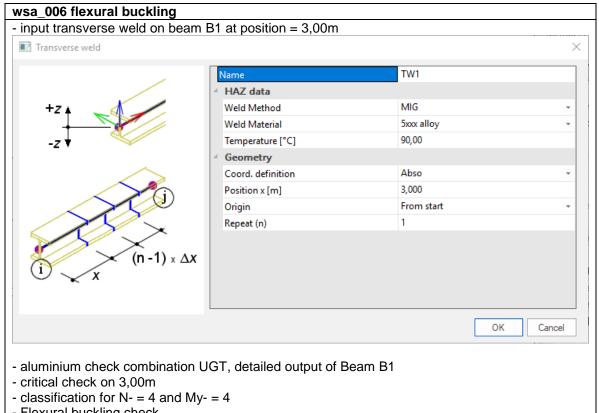
With:

- λ Critical load factor for the selected stability combination
 - N_{Ed} Design loading in the member
 - E Modulus of Young

I Moment of inertia

s Member length

> Example


wsa_006 (flexural buckling)

- calculate project
- aluminium check combination UGT, detailed output of Beam B1
- critical check on 3,00m
- classification for N- = 4 and My- = 4
- Flexural buckling check Flexural Buckling check

According to EN 1999-1-1 article 6.3.1.1 and formula (6.48).

уу	ZZ	
sway	non-sway	
3,000	5,500	m
1,13	1,00	
3,387	5,500	m
787,52	65,05	kN
1,01	3,52	
0,10	0,10	
0,20	0,20	
0,65	0,08	
1,00	1,00	
474,55	55,80	kN
	sway 3,000 1,13 3,387 787,52 1,01 0,10 0,20 0,65 1,00	sway non-sway 3,000 5,500 1,13 1,00 3,387 5,500 787,52 65,05 1,01 3,52 0,10 0,10 0,20 0,20 0,65 0,08 1,00 1,00

Table of values				
Aeff	3092	mm² 🔶		
Nb,Rd	55,80	kN		
Unity check	0,29	-		

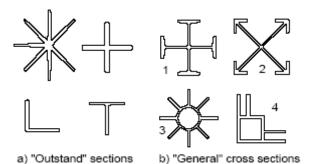
Flexural Buckling check

According to EN 1999-1-1 article 6.3.1.1 and formula (6.48).

Buckling parameters	уу	ZZ	
Sway type	sway	non-sway	
System Length L	3,000	5,500	m
Buckling factor k	1,13	1,00	
Buckling length Lcr	3,387	5,500	m
Critical Euler Load Ncr	787,52	65,05	kN
Relative slenderness Lambda	1,01	3,52	
Limit slenderness Lambda,0	0,10	0,10	
Imperfection Alpha	0,20	0,20	
Reduction factor Chi	0,65	0,08	
Welding factor Kappa	0,63	0,63	
Buckling resistance Nb,Rd	297,14	34,94	kN
Table of values			

Table of values			
Aeff	3092	mm ²	
Nb,Rd	34,94	kN	
Unity check	0,46	-	

The difference between the two examples can be found in the value for $N_{\text{b},\text{Rd}}.$


Around the y-axis:

$$\begin{split} N_{b,Rd,without\ weld} &= 474,55\ kN \\ N_{b,Rd,with\ weld} &= 474,55\ kN\ \cdot\kappa = 474,55\ kN\ \cdot 0,63 = 298,97kN \end{split}$$

Torsional (-Flexural) Buckling

If the section contains only Plate Types F, SO, UO it is regarded as '**Composed entirely of radiating outstands**'. In this case A_{eff} is taken as A calculated from the reduced shape for N+($\rho_{0,HAZ}$) according to Table 6.7 Ref.[1].

In all other cases, the section is regarded as 'General'. In this case A_{eff} is taken as A calculated from the reduced shape for N-

Note:

The Torsional (-Flexural) buckling check is ignored for sections complying with the rules given in art. 6.3.1.4 (1) Ref.[1].

The value of the elastic critical load N_{cr} is taken as the smallest of $N_{cr,T}$ (Torsional buckling) and $N_{cr,TF}$ (Torsional-Flexural buckling).

Calculation of Ncr,T

The elastic critical load N_{cr,T} for torsional buckling is calculated according to Ref.[11].

$$N_{cr,T} = \frac{1}{i_0^2} \left(GI_t + \frac{\pi^2 EI_w}{l_T^2} \right)$$

$i_0^2 = i_y^2 + i_z^2$	$+ y_0^2 + z_0^2$	
With:	E	Modulus of Young
	G	Shear modulus
	lt	Torsion constant
	Iw	Warping constant
	lτ	Buckling length for the torsional buckling mode
	y₀ and z₀	Coordinates of the shear center with respect to the centroid
	iy	radius of gyration about the strong axis
	İz	radius of gyration about the weak axis
_	S z_0 y_0 G	y

Calculation of Ncr,TF

The elastic critical load $N_{cr,TF}$ for torsional flexural buckling is calculated according to Ref.[11].

 $N_{\mbox{cr,TF}}$ is taken as the smallest root of the following cubic equation in N:

 $i_0^2 (N - N_{cr,y}) (N - N_{cr,z}) (N - N_{cr,T}) - N^2 y_0^2 (N - N_{cr,z}) - N^2 z_0^2 (N - N_{cr,y}) = 0$

With:	N _{cr,y}	Critical axial load for flexural buckling about the y-y axis
	N _{cr,z}	Critical axial load for flexural buckling about the z-z axis
	N _{cr,T}	Critical axial load for torsional buckling

> Example

wsa_007 (torsional (- flexural) buckling)
- calculate project
- aluminium check for Loadcase "LC1"
- critical check on 3,00m
- classification for $N = 4$, $My = 4$ and $My = 4$
- Torsional - Flexural buckling check

Torsional (-Flexural) Buckling check According to EN 1999-1-1 article 6.3.1.1& 6.3.1.4 and formula (6.48).

Table of values		
Cross-section Type	General	
Torsional Buckling length	6,000	m
Ncr, T	14,99	kN
Ncr, TF	4,86	kN
Relative slenderness Lambda, T	3,71///	D
Limit slenderness Lambda,0	0,40	1.1.0
Imperfection Alpha	0,35	1 <i> </i>
Aeff	327,39	mm ²
Reduction factor Chi	0,07	1111
Buckling resistance Nb,Rd	4,06	kN /
Unity check	2,47	AL L

Lateral Torsional Buckling

The Lateral Torsional buckling check is verified using art. 6.3.2.1 Ref.[1].

For the calculation of the elastic critical moment M_{cr} the following methods are available:

- General formula (standard method)
- LTBII Eigenvalue solution
- Manual input

Note:

The Lateral Torsional Buckling check is ignored for circular hollow sections according to art. 6.3.3 (1) Ref.[1].

Calculation of Mcr – General Formula

For I sections (symmetric and asymmetric) and RHS (Rectangular Hollow Section) sections the elastic critical moment for LTB **M**_{cr} is given by the general formula F.2. Annex F Ref. [12]. For the calculation of the moment factors C1, C2 and C3 reference is made to the paragraph "Calculation of Moment factors for LTB" of the Aluminium Code Check Theoretical Background.

For the other supported sections, the elastic critical moment for LTB $\ensuremath{M_{cr}}$ is given by:

Mcr =
$$\frac{\pi^2 \text{EI}_z}{L^2} \sqrt{\frac{\text{Iw}}{\text{I}_z} + \frac{\text{L}^2 \text{GI}_t}{\pi^2 \text{EI}_z}}$$

With:

Е	Modulus of elasticity
G	Shear modulus
L	Length of the beam between points which have lateral restraint (= $I_{\text{LTB}})$
lw	Warping constant
lt	Torsional constant
lz	Moment of inertia about the minor axis

See also Ref. [13], part 7 and in particular part 7.7 for channel sections. Composed rail sections are considered as equivalent asymmetric I sections.

Diaphragms

When diaphragms (steel sheeting) are used, the torsional constant I_t is adapted for symmetric/asymmetric I sections, channel sections, Z sections, cold formed U, C, Z sections.

See Ref.[14], Chapter 10.1.5., Ref.[15],3.5 and Ref.[16],3.3.4.

$$\begin{split} &I_{t,id} = I_t + \text{vorhC}_9 \frac{l^2}{\pi^2 G} \\ &\frac{1}{\text{vorhC}_9} = \frac{1}{C_{9M,k}} + \frac{1}{C_{9A,k}} + \frac{1}{C_{9P,k}} \\ &C_{9M,k} = k \frac{EI_{eff}}{s} \\ &C_{9A,k} = C_{100} \bigg[\frac{b_a}{100} \bigg]^2 \quad \text{if} \quad b_a \leq 125 \\ &C_{9A,k} = 1.25 \cdot C_{100} \bigg[\frac{b_a}{100} \bigg] \quad \text{if} \quad 125 < b_a < 200 \\ &C_{9P,k} \approx \frac{3 \cdot E \cdot I_s}{(h-t)} \\ &I_s = \frac{s^3}{12} \end{split}$$

With:

I	LTB length
G	Shear modulus
vorh	Actual rotational stiffness of diaphragm
Cθ	
C _{0M,k}	Rotational stiffness of the diaphragm
$C_{\theta A,k}$	Rotational stiffness of the connection between the diaphragm and the beam
$C_{\theta P,k}$	Rotational stiffness due to the distortion of the beam
k	Numerical coefficient
	= 2 for single or two spans of the diaphragm
	= 4 for 3 or more spans of the diaphragm
Eleff	Bending stiffness per unit width of the diaphragm
S	Spacing of the beam
ba	Width of the beam flange (in mm)
C ₁₀₀	Rotation coefficient - see table
h	Height of the beam
t	Thickness of the beam flange
S	Thickness of the beam web

Positioning of sheeting		Sheet fastened through		Pitch of fasteners		Washer diameter	C ₁₀₀	b _{T.max}
Positive	Negative	Trough	Crest	$\epsilon = b_{\rm R}$	$e = 2b_{\rm R}$	[mm]	[kNm/m]	[mm]
For gravit	y loading:				2000 - 11 No			
×		×		×		22	5,2	40
×		×			×	22	3,1	40
	×		×	×		Ka	10,0	40
	×		×		×	Ka	5,2	40
	×	×		×		22	3,1	120
	×	×			×	22	2,0	120
For uplift	loading:							
×		×	1	×		16	2,6	40
×		×			×	16	1,7	40
b _T is t	the corrugation the width of t es a steel sad	he sheeting	flange throu	igh which it		Sheet fast		n:
- sheet	s in this table fastener scre washers of th	ws of diame	ter: φ	= 6,3 mm			the crest:	
	ing of nomin			≥ 1,0 m ≥ 0.66 m	S		-	~

LTBII Eigenvalue solution

For calculation of Mcr using LTBII the reference is made to chapter "LTBII: Lateral Torsional Buckling 2nd Order Analysis" of the Aluminium Code Check Theoretical Background.

> Example

W	/sa_008 (lateral torsional buckling)
-	calculate project
-	aluminium check, LC1
-	critical check on 3,00m
-	classification for $N - = 4$, $My + = 4$ and $My - = 4$
-	Lateral Torsional buckling check

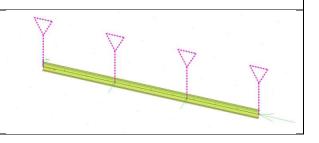
- LTB length = 6,00m

Lateral Torsional Buckling Check

According to EN 1999-1-1 article 6.3.2.1 and formula (6.54).

LTB Parameters				
Alpha		0,688		
Wel,y		41599,2	23	mm ³
Elastic critical moment Mcr		0,79	1	kŃm
Relative slenderness Lambo	da,LT	2,727	1	
Limit slenderness Lambda,	0,LT	0,400	1	
Imperfection Alpha, LT	1	0,200		1
Reduction factor Chi, LT		0,126	14	
Buckling resistance Mb,Rd	Λ	0,67		kNm
Unity check		2,49		-
Mcr Parameters	100			
LTB length	6,000)	m	
k	1,00			
kw	1,00			
C1	1,13			
C2	0,45			
C3	0,53			
Influence of load position	No int	fluence		

wsa_008 (lateral torsional buckling)


- input 4 LTB-restraints regulary on topflange of beam
- aluminium check, LC1
- critical check on 3,00m
- classification for N- = 4 , My+ = 4 and My- = 4
- Lateral Torsional buckling check
- LTB length = 2,00m

Lateral Torsional Buckling Check

According to EN 1999-1-1 article 6.3.2.1 and formula (6.54).

LTB Parameters		
Alpha	0,688	1
Wel,y	41599,23	mm ³
Elastic critical moment Mcr	6,66	kNm
Relative slenderness Lambda,LT	0,939	
Limit slenderness Lambda,0,LT	0,400	
Imperfection Alpha,LT	0,200	1
Reduction factor Chi, LT	0,756	
Buckling resistance Mb,Rd	4,03	kNm
Unity check	0,41	-

Mcr Parameters		
LTB length	2,000	m
k	1,00	
kw	1,00	
C1	1,10	
C2	0,16	
C3	1,00	
Influence of load position	No influence	

Bending and Axial compression

Flexural Buckling

According to section 6.3.3.1.(1), (2), (3) Ref.[1], alternative values for η_c , ϵ_{yc} , ϵ_{zc} , ψ_c can be chosen. In SCIA Engineer, the user can input these alternative values using 'Aluminium' > 'Setup' > 'Member check' > 'Alternative values'.

Lateral Torsional Buckling

Members containing localized welds

In case transverse welds are inputted, the extend of the HAZ is calculated as specified in chapter "Calculation of Reduction factor ρ_{HAZ} " and compared to the least width of the cross-section. The reduction factors, HAZ softening factors ω_0 , ω_x and ω_{xLT} are calculated according to art. 6.3.3.3 Ref.[1].

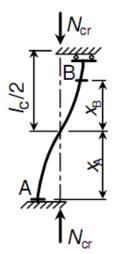
Unequal end moments and/or transverse loads

If the section under consideration is not located in a HAZ zone, the reduction factors ω_x and ω_{xLT} are then calculated according to art. 6.3.3.5. Ref.[1].

In this case ω_0 is taken equal to **1,00**.

Calculation of x_s

The distance \mathbf{x}_s is defined as the distance from the studied section to a simple support or point of contra flexure of the deflection curve for elastic buckling of axial force only.


By default x_s is taken as half of the buckling length for each section. This leads to a denominator of **1,00** in the formulas of the reduction factors following Ref.[18] and [19].

Depending on how the buckling shape is defined, a more refined approach can be used for the calculation of x_s .

Known buckling shape

The buckling shape is assumed to be known in case the buckling ratio is calculated according to the General Formula specified in chapter "Calculation of Buckling ratio – General Formula". The basic assumption is that the deformations for the buckling load case have an affinity with the buckling shape.

Since the buckling shape (deformed structure) is known, the distance from each section to a simple support or point of contra flexure can be calculated. As such x_s will be different in each section. A simple support or point of contra flexure are in this case taken as the positions where the bending moment diagram for the buckling load case reaches zero.

Note:

Since for a known buckling shape x_s can be different in each section, accurate results can be obtained by increasing the numbers of sections on average member in the 'Solver Setup' of SCIA Engineer.

Unknown buckling shape

In case the buckling ratio is not calculated according to the General Formula specified in chapter "Calculation of Buckling ratio – General Formula", the buckling shape is taken as unknown. This is thus the case for manual input or if the buckling ratio is calculated from stability.

When the buckling shape is unknown, x_s can be calculated according to formula (6.71) Ref.[1]:

$$\cos\left(\frac{x_s\pi}{l_c}\right) = \frac{\left(M_{Ed,1} - M_{Ed,2}\right)}{\pi M_{Rd}} \cdot \frac{N_{Rd}}{N_{Ed}} \cdot \frac{1}{1/\chi - 1} \text{ but } \mathbf{x}_{\mathbf{s}} \ge 0$$

With:

lc	Buckling length
$M_{Ed,1}$ and $M_{Ed,2}$	Design values of the end moments at the system length of the member
N _{Ed}	Design value of the axial compression force
M _{Rd}	Bending moment capacity
N _{Rd}	Axial compression force capacity
χ	Reduction factor for flexural buckling

Since the formula returns only one value for x_s , this value will be used in each section of the member.

The application of the formula is however limited:

- The formula is only valid in case the member has a linear moment diagram.
- Since the left side of the equation concerns a cosine, the right side has to return a value between -1,00 and +1,00

If one of the two above stated limitations occur, the formula is not applied and instead x_s is taken as half of the buckling length for each section.

Note:

The above specified formula contains the factor π in the denominator of the right side of the equation. This factor was erroneously omitted in formula (6.71) of EN 1999-1-1:2007.

The user can change the calculation protocol for x_s . This input can be changed in the menu 'Aluminium' > 'Setup' > 'Member check'. Here the user can choose between the formulas discussed above or to use half of the buckling length for x_s .

Aluminium setup			×
- Standard EN	Name	Standard EN	
- Aluminium Member check	Aluminium		
	4 Member check	EN 1999-1-1	
Alternative values	✓ Default sway types		
Buckling defaults	у-у	🗹 yes	
	z-z	🗆 no	
	⁴ Buckling length ratios ky, kz		
	Max. k ratio [-]	10,00	
	Max. slenderness [-]	200,00	
	2nd order buckling ratios	Acc. to input	
	Calculation of xs		
	Unknown buckling shape	According to EN 1999-1-1 formula(6.71)	
	Known buckling shape	According to buckling load case	-
	4 General settings		
	Elastic check only	🗌 no	
	Section check only	🗌 no	
	Flexural buckling accounted for by 2nd order calculation	🗌 no	
	Relative deformation		
	Alternative values		
	Buckling defaults		
	-		
	Load default non-NA para	meters Load default NA parameters	OK Cancel

> Example

wsa_009a (xs1)
 B1: default calculation of buckling factors ky and kz according to General Formula → buckling shape is "known" for both directions
 B2: default calculation of buckling factors ky, manual input of buckling factor kz → buckling shape is known for yy, but unknown for zz
-B3: default calculation of buckling factors ky, manual input of buckling factor kz → buckling shape is known for yy, but unknown for zz
 calculation of xs for unknown buckling shape: according to formula (6.71) Ref.[1]. calculation of xs for known buckling shape: according to buckling load case check is done at the ends of the beams

- Results for Beam B1- check moments My and Mz- B1: xs_y = xs_z = 6,00m

Table of values		
	Buckling Loadcase	
Method for xs,z	Buckling Loadcase	

Table of upl	100	-
Table of value		
xs,y	6,000	m
XS,Z	6,000	m
w0	1,000	
wx,y	1,000	
WX,Z	2,692	
wxLT	1,353	

Results for Beam B2

- check moments My and Mz
- B1: $xs_y = 6,00m$ and $xs_z = 1,50m$

- for xs_z, the buckling shape is unknown. Thus formula (6.71) will be used, but the limitations of this formula are not respected. As such, Half of the buckling length will be used.

The buckling length = kz * L = 0.5 * 6.00m = 1.5m

Table of values		
Method for xs,y	Buckling Loadcase	
Method for xs,z	Half of Buckling Length	
Table of values		
xs,y	6,000 🖇	m
XS,Z	1,500 *	m
w0	1,000	
wx,y	1,000	
WX,Z	1,000	
wxLT	1,000	

Note: Formula (6.71) cannot be applied due to nonlinear moment diagram or imaginary arc cosine.

Results for Beam B3

check moments My and Mz

-B1: $xs_y = 6,00m$ and $xs_z = 1,134m$

- for xs_z, the buckling shape is unknown. Thus formula (6.71) will be used.

Table of values		
Method for xs,y	Buckling Loadcase	
Method for xs,z	Formula (6.71)	
Table of values		
xs,y	6,000	m
XS,Z	1,157	m
w0	1,000	
wx,y	1,000	
WX,Z	1,010	
wxLT	1,008	
MEd,1,z	10,00	kNm
MEd,2,z	0,00	kNm

Example

wsa_009b (xs2)

- B1 and B2: default calculation of buckling factors ky and kz according to General Formula

ightarrow buckling shape is "known" for both directions

- Length of beams = 4,00m

- calculation of xs for unknown buckling shape: use half of buckling length

- calculation of xs for known buckling shape: according to buckling load case

Results for Beam B1

- check moments for LC1 = buckling load case = load case as in General formula \rightarrow inflextion point for My is to be found at dx = +-3,00m Thus the distance left the support in yy-direction is +-1,00m \rightarrow xs_y = 4,00m - 3,00m = 0,994m - xs_z = 4,00m

Combined Bending and Axial	Compression Check	
According to EN 1999-1-1 article	6.3.3.1,6.3.3.2 and forr	nula (6.59),(6.63).

Table of value	s	
Eta,c (6.61a)	0,80	
Xi,yc (6.61b)	0,80	
Xi,zc (6.61c)	0,80	
Gamma,c	1,00	
Alpha,y	1,00	
Alpha,z	1,00	
NRd	746,45	kN
My,Rd	44,28	kNm
Mz,Rd	6,26	kNm

Unity checky-y (6.59) = 0,00 + 0,04 = 0,04 -Unity checkz-z (6.59) = 0,00 + 1,28 = **1,28** -Unity check(6.63) = 0,00 + 0,24 + 1,22 = **1,46** -

Table of values		491	
Method for xs,y	Buckling Loadcase		
Method for xs,z	Buckling Loadcase		
xs,y	0,994	m	
xs,z w0	4,000	m	
w0	1,000		
wx,y	1,000		
WX,Z	1,000		
WXLT	1,000		

Shear Buckling

The shear buckling check is verified using art. 6.7.4 & 6.7.6 Ref.[1]. Distinction is made between two separate cases:

- No stiffeners are inputted on the member or stiffeners are inputted only at the member ends.
- Any other input of stiffeners (at intermediate positions, at the ends and intermediate positions ...).

The first case is verified according to art. 6.7.4.1 Ref.[1]. The second case is verified according to art. 6.7.4.2 Ref.[1].

Note:

For shear buckling only transverse stiffeners are supported. Longitudinal stiffeners are not supported. In all cases rigid end posts are assumed.

Plate girders with stiffeners at supports

No stiffeners are inputted on the member or stiffeners are inputted only at the member ends. The verification is done according to 6.7.4.1 Ref.[1].

The check is executed when the following condition is met:

$$\frac{h_w}{t_w} > \frac{2,37}{\eta} \sqrt{\frac{E}{f_0}}$$

With:	hw	Web height
	tw	Web thickness
	η	Factor for shear buckling resistance in the plastic range
	Е	Modulus of Young
	fo	0,2% proof strength

The design shear resistance V_{Rd} for shear buckling consists of one part: the contribution of the web $V_{w,Rd}.$

The slenderness λ_w is calculated as follows:

$$\lambda_w = 0.35 \frac{h_w}{t_w} \sqrt{\frac{f_0}{E}}$$

Using the slenderness λ_w the factor for shear buckling ρ_v is obtained from the following table:

Ranges of λ_{w}	$\rho_{\rm v} for rigid stiffener$
$\lambda_w \leq \frac{0.83}{\eta}$	η
$\frac{0,83}{\eta} < \lambda_w < 0.937$	$\frac{0,83}{\lambda_w}$
0,937≤λ _w	$\frac{2,3}{1,66+\lambda_w}$

In this table, the value of $\boldsymbol{\eta}$ is taken as follows:

 $\eta = 0.7 + 0.35 f_{uv} / f_{0v}$ but $\eta \le 1.2$

With: f_{uw} Ultimate strength of the web material f_{0w} Yield strength of the web material

The contribution of the web $V_{w,Rd}$ can then be calculated as follows:

$$V_{w,Rd} = \rho_v t_w h_w \frac{f_0}{\sqrt{3} \gamma_{MI}}$$

For interaction see paragraph " Interaction ".

Plate girders with intermediate web stiffeners

Any other input of stiffeners (at intermediate positions, at the ends and intermediate positions ...). The verification is done according to 6.7.4.2 Ref.[1].

The check is executed when the following condition is met:

$\frac{h_w}{t_w} > \frac{1.02}{\eta}$	$\frac{2}{2}\sqrt{\frac{k_{\tau}E}{f_0}}$	
With:	hw	Web height
	tw	Web thickness
	η	Factor for shear buckling resistance in the plastic range
	kτ	Shear buckling coefficient for the web panel

E	Modulus of Young
f ₀	0,2% proof strength

The design shear resistance V_{Rd} for shear buckling consists of two parts: the contribution of the web $V_{w,Rd}$ and the contribution of the flanges $V_{f,Rd}$.

Contribution of the web

Using the distance **a** between the stiffeners and the height of the web h_w the shear buckling coefficient k_τ can be calculated:

$$k_{\tau} = 5,34 + 4,00 \left(\frac{h_{w}}{a}\right)^{2} \text{ if } \frac{a}{h_{w}} \ge 1$$
$$k_{\tau} = 4,00 + 5,34 \left(\frac{h_{w}}{a}\right)^{2} \text{ if } \frac{a}{h_{w}} < 1$$

The value k_τ can now be used to calculate the slenderness $\lambda_w.$

λ -	0,81	h_{w}	f_0
$\Lambda_w -$	$\sqrt{k_{\tau}}$	$\overline{t_w}$	E

Using the slenderness λ_w the factor for shear buckling ρ_v is obtained from the following table:

Ranges of λ_w	ρ_v for rigid stiffener
$\lambda_w \leq \frac{0.83}{\eta}$	η
$\frac{0.83}{\eta} < \lambda_w < 0.937$	$\frac{0,83}{\lambda_w}$
0,937≤λ _w	$\frac{2,3}{1,66+\lambda_w}$

In this table, the value of η is taken as follows:

$$\eta = 0.7 + 0.35 f_{uv} / f_{0v}$$
 but $\eta \le 1.2$

With: f_{uw} Ultimate strength of the web material f_{0w} Yield strength of the web material

The contribution of the web $V_{\mathsf{w},\mathsf{Rd}}$ can then be calculated as follows:

$$V_{w,Rd} = \rho_v t_w h_w \frac{f_0}{\sqrt{3} \gamma_{MI}}$$

Contribution of the flanges

First the design moment resistance of the cross-section considering only the flanges $M_{f,Rd}$ is calculated.

When $M_{Ed} \ge M_{f,Rd}$ then $V_{f,Rd} = 0$

When $M_{\rm Ed} < M_{\rm f,Rd}$ then V_{f,Rd} is calculated as follows:

$$V_{f,Rd} = \frac{b_{f} t_{f}^{2} f_{0f}}{c \gamma_{Ml}} \left(1 - \left(\frac{M_{Ed}}{M_{f,Rd}} \right)^{2} \right)$$

With: \mathbf{b}_{f} and \mathbf{t}_{f} the width and thickness of the flange leading to the lowest resistance.

 $b_f \leq 15 t_f$ On each side of the web.

$$c = a \left(0,08 + \frac{4,4 b_f t_f^2 f_{0f}}{t_w b_w^2 f_{0w}} \right)$$

With: for fow Yield strength of the flange material Yield strength of the web material

If an axial force N_{Ed} is present, the value of $M_{f,Rd}$ is be reduced by the following factor:

$$\left(1 - \left(\frac{N_{Ed}}{(A_{fl} + A_{f2})\frac{f_{0f}}{\gamma_{Ml}}}\right)\right)$$

With: A_{f1} and A_{f2} the areas of the top and bottom flanges.

The design shear resistance V_{Rd} is then calculated as follows:

$$V_{Rd} = V_{w,Rd} + V_{f,Rd}$$

For interaction see paragraph "

Interaction ".

Interaction

If required, for both above cases the interaction between shear force, bending moment and axial force is checked according to art. 6.7.6.1 Ref.[1].

If $M_{Ed} > M_{f,Rd}$ the following two expressions are checked:

$$\frac{M_{Ed} + M_{f,Rd}}{2M_{pl,Rd}} + \frac{V_{Ed}}{V_{w,Rd}} \left(1 - \frac{M_{f,Rd}}{M_{pl,Rd}}\right) \le 1,00$$

$$M_{Ed} \le M_{c,Rd}$$

With:

 $M_{c,Rd} = W_{eff} f_0 / \gamma_{MI}$

 $\mathbf{M}_{f,Rd}$ design moment resistance of the cross-section considering only the flanges $\mathbf{M}_{pl,Rd}$ Plastic design bending moment resistance

If an axial force N_{Ed} is also applied, then $M_{pl,Rd}$ is replaced by the reduced plastic moment resistance $M_{N,Rd}$ given by:

$$M_{N,Rd} = M_{pl,Rd} \left(1 - \left(\frac{N_{Ed}}{(A_{fl} + A_{f2}) \frac{f_{0f}}{\gamma_{Ml}}} \right)^2 \right)$$

With: A_{f1} and A_{f2} the areas of the top and bottom flanges.

> Example

wsa_010 (shear buckling – stiffeners)
- B1, B2 and B3 loaded by line load 10kN/m
- B4 loaded by line load of 10kN/m and normal compression force of 1200kN
 B1: no stiffeners B2: stiffeners at ends B3: stiffeners at ends and interior B4: stiffeners at ends and interior input of result-sections at beginning of beams

Results for Beam B1 - using formula (6.122) and (6.147, Interaction) - V_{Rd} = V_{w,Rd} = 905,61kN - u.c. = 0,03

Shear buckling check.

According to EN 1999-1-1 article 6.7.4.1& 6.7.6.1 and formula (6.122),(6.147). Rigid end posts

Table of values		
hw/tw	81,333	
Eta	1,18	
Lambda,w	1,541	
Rho,v	0,72	
Af1	3600	mm ²
Af2	3600	mm ²
Mf,Rd	662,86	kNm
VRd	905,61	kN
Mpl,Rd	1157,10	kNm
Mc,Rd	747,45	kNm
Unity check (6.122)	0,03	-
Unity check (6.147 curve 2)	-	
Unity check (6.147 curve 3)	-	

Advanced Tr

The member satisfies the stability check.

Results for Beam B2

- stiffeners at ends, idem as results for B1
- using formula (6.122) and (6.147, Interaction)
- $-V_{Rd} = V_{w,Rd} = 905,61 \text{kN}$

- u.c. = 0,03

Results for Beam B3

- stiffeners at ends and intermediate stiffeners
- a = distance between stiffeners = 1,5m
- using formula (6.124) and (6.147, Interaction)
- $-V_{Rd} = V_{w,Rd} + V_{f,Rd} = 964,75 + 54,28 = 1019,03kN$

- u.c. = 0,03

Shear buckling check.

```
According to EN 1999-1-1 article 6.7.4.2& 6.7.6.1 and formula (6.124), (6.147).
Rigid end posts
```

Table of values		
hw/tw	81,333	
а	1500	mm
k, Tau	7,033	
Eta	1,18	
Lambda, w	1,344	
Rho,v	0,77	
Af1	3600	mm ²
Af2	3600	mm ²
с	145	mm
Mf,Rd	662,86	kNm
Vw,Rd	964,75	kN
Vf,Rd	54,28	kN
VRd	1019,03	kN
Mpl,Rd	1157,10	kNm
Mc,Rd	747,45	kNm
Unity check (6.124)	0,03	-
Unity check (6.147 curve 2)	-	
Unity check (6.147 curve 3)	-	

The member satisfies the stability check.

Results for Beam B4	
- stiffeners at ends and intermediate stiffeners (+ extra normal force)	

- a = distance between stiffeners = 1,5m - using formula (6.124) and (6.147, Interaction) - Normal force exist, M_{f,Rd} so needs to be reduced - M_{Ed} > M_{f,Rd} → shear contribution of the flanges may not be taken into account - V_{Rd} = V_{w,Rd} + V_{f,Rd} = 964,75 + 0,00 = 964,75kN - u.c. = 0,03 (6.122) - u.c. = 0,39 (6.147 curve (2)) - u.c. = 0,13 (6.147 curve (3))

Shear buckling check.

According to EN 1999-1-1 article 6.7.4.2& 6.7.6.1 and formula (6.124), (6.147). Rigid end posts

Table of values		
hw/tw	81,333	
а	1500	mm
k, Tau	7,033	
Eta	1,18	
Lambda, w	1,344	
Rho,v	0,77	
Af1	3600	mm ²
Af2	3600	mm ²
с	145	mm
Mf,Rd	70,06	kNm
Vw,Rd	964,75	kN
Vf,Rd	0,00	kN
VRd	964,75	kN
Mpl,Rd	231,67	kNm
Mc,Rd	747,45	kNm
Unity check (6.124)	0,03	-
Unity check (6.147 curve 2)	0,39	-
Unity check (6.147 curve 3)	0,13	-

The member does NOT satisfy the stability check!

References

- [1] Eurocode 9
 Design of aluminium structures
 Part 1 1 : General structural rules
 EN 1999-1-1:2007
- [2] TALAT Lecture 2301
 Design of members
 European Aluminium Association
 T. Höglund, 1999.
- [3] Stahl im Hochbau
 14. Auglage Band I/ Teil 2
 Verlag Stahleisen mbH, Düsseldorf 1986
- [4] Kaltprofile3. AuflageVerlag Stahleisen mbH, Düsseldorf 1982
- [5] Handleiding moduul STACO VGI Staalbouwkundig Genootschap Staalcentrum Nederland 5684/82
- [6] Newmark N.M. A simple approximate formula for effective end-fixity of columns J.Aero.Sc. Vol.16 Feb.1949 pp.116
- [7] Stabiliteit voor de staalconstructeur uitgave Staalbouwkundig Genootschap
- [8] Rapportnr. BI-87-20/63.4.3360
 Controleregels voor lijnvormige constructie-elementen
 IBBC Maart 1987
- [9] Staalconstructies TGB 1990
 Basiseisen en basisrekenregels voor overwegend statisch belaste constructies
 NEN 6770, december 1991
- [10] DIN18800 Teil 2 Stahlbauten : Stabilitätsfälle, Knicken von Stäben und Stabwerken November 1990
- [11] SN001a-EN-EU NCCI: Critical axial load for torsional and flexural torsional buckling modes Access Steel, 2006 www.access-steel.com
- [12] Eurocode 3 Design of steel structures
 Part 1 - 1 : General rules and rules for buildings
 ENV 1993-1-1:1992
- [13] R. Maquoi

ELEMENTS DE CONSTRUCTIONS METALLIQUE Ulg , Faculté des Sciences Appliquées, 1988

- [14] ENV 1993-1-3:1996
 Eurocode 3 : Design of steel structures
 Part 1-3 : General rules
 Supplementary rules for cold formed thin gauge members and sheeting CEN 1996
- [15] E. Kahlmeyer Stahlbau nach DIN 18 800 (11.90) Werner-Verlag, Düsseldorf
- Beuth-Kommentare Stahlbauten
 Erläuterungen zu DIN 18 800 Teil 1 bis Teil 4, 1.Auflage Beuth Verlag, Berlin-Köln 1993
- [17] Staalconstructies TGB 1990 Stabiliteit NEN 6771 - 1991
- [18] A Gerhsi, R. Landolfo, F.M. Mazzolani (2002) Design of Metallic cold formed thin-walled members Spon Press, London, UK
- [19] G. Valtinat (2003) Aluminium im Konstruktiven Ingenieurbau Ernst & Sohn, Berlin, Germany
- [20] Aluminium Code Check EN 1999-1-1, Theoretical Background